
Phuzzy.link: A SPARQL-powered Client-Sided
Extensible Semantic Web Browser

Blake Regalia, Krzysztof Janowicz and Gengchen Mai

STKO Lab, University of California, Santa Barbara, USA

Abstract. With a rapidly increasing amount of machine-readable re-
sources being generated and published to the Linked Data cloud, human-
readable representations of those resources continue to serve an im-
portant demand. While dereferencing interfaces offer an easy, general-
purpose solution to providing human-readable representations, they are
not always well-equipped to support the specific characteristics of a
dataset, such as having the ability to render embedded maps for display-
ing geometries. Another shortcoming to exploring resources via derefer-
encing interfaces comes from deciding how to handle nodes that belong
to remote IRIs. On one hand, a user may wish to leave the current data
source and dereference the remote IRI. On the other hand, the user may
wish to remain within the current interface and view the dataset’s own
triples about the given node. This leads to an interesting problem since
any such human-readable representation of a remote IRI is no longer the
result of dereferencing. Finally and perhaps most importantly, many data
providers do not deploy and maintain dereferencing interfaces at all. In
this paper, we address these issues by presenting a fully-extensible Web
interface for exploring remote RDF datasets by querying their SPARQL
endpoints from the client.

1 Introduction and Motivation

The rapid increase in graphical interfaces for browsing, querying, visualizing,
mining, linking, and summarizing Linked Data and ontologies highlights their
increasing complexity and heterogeneity as well as the interest of a broader
community. Each of these interfaces either addresses a certain gap in previous
work, rests on a different stack of technologies, serves a particular domain, or
provides a visual interface for a new workflow or tasks, such as co-reference
resolution or ontology alignment [13]. While this wealth of interfaces may seem
redundant and makes the selection of a particular interface more challenging to
the end user, it enables the community to test new ideas and converge on useful
features, while unsuccessful approaches disappear over time. One family of such
interfaces is concerned with providing a frontend for SPARQL endpoints, with
Pubby [4] being one of the first and most popular systems. Another family are
Linked Data browsers that enable humans to navigate the Linked Data cloud,
Tabulator being the first widely used implementation [2]. Today we are seeing
interfaces that combine a variety of functionalities such as query construction



and result visualization as well as those that try to address the problem that the
heterogeneity of datasets, interfaces, frontends, endpoints, and so forth, makes
it difficult to ensure a consistent user experience across the Linked Data cloud.
For instance, a client-side browsing interface should put the user in charge of
deciding how to render Linked Data from distant SPARQL endpoints.

Motivated by these challenges, we developed Phuzzy.link1, a Semantic Web
Browser that gives data publishers the ability to adapt the interface to support
special characteristics of their datasets, yet also puts users in full control over
their viewing experience. We try to address issues that we outline about existing
interfaces in the Related Work section. To summarize, the novel contribu-
tions of our approach are as follows:

• A public interface that is free, open-source and flexibly extensible by allowing
anyone to develop and integrate their own plug-ins.

• The system operates from entirely within the browser which means that (1)
no installation is required by hosts nor clients and (2) all content are fetched
directly from the target endpoint rather than through some middleman.

• The hosts of endpoints (and ostensibly the data publishers themselves) have
exclusive access to authoritatively set and modify the default configurations
used when browsing their endpoint URL.

In this work, we present the interface, demonstrate its usage with an example
from a DBpedia resource, and showcase how plug-ins can enhance the user ex-
perience based on arbitrary ontological predicates within the context of a given
dataset.

2 Related Work

There are several Semantic Web browsers available2 to the community, but each
of these applications are limited by general-purpose usability. We see an oppor-
tunity to provide a general-purpose browser that is more sustainable by offering
open extensibility of its content selection and content formatting. In this sec-
tion, we limit ourselves to review a few selected systems, as a recent, up-to-date
survey has been provided by [5].

Pubby [4] is a popular general-purpose Linked Data frontend that can be
deployed atop a SPARQL endpoint. Pubby runs as a Java servlet, meaning
that it must first be installed and then configured on a per-endpoint basis. Our
interface works entirely in the browser, requires no installation, and is ready to
browse any public SPARQL endpoint that allows Cross-Origin Resource Sharing
(CORS). Furthermore, Pubby only works with SPARQL endpoints that support
DESCRIBE queries, while our service exclusively relies on SELECT queries to
download triples.

1The system and its documentation can be found at http://phuzzy.link, and the
source code and plug-ins at https://github.com/blake-regalia/phuzzy.link.

2https://www.w3.org/2001/sw/wiki/Category:Semantic_Web_Browser

http://phuzzy.link
https://github.com/blake-regalia/phuzzy.link
https://www.w3.org/2001/sw/wiki/Category:Semantic_Web_Browser


LodLive [3] offers an RDF resource browser as an interactive graph visu-
alization that dynamically pulls information from the Web using Linked Data
standards such as SPARQL and RDF (via content-negotiation). Another of their
team’s product is LodView3, which presents a static tabular display for each
RDF resource. Much like our approach, these tools are capable of dynamically
constructing human-readable representations of RDF resources, and at times en-
tirely from the client. The problem we sought to address in our interface however
is with the limitation imposed by prescribed interface components and the in-
herent variability of datatypes. Where our interface stands apart is how we give
users full control over content selection and content formatting of the display, as
well as the styling and function of the interface itself.

RelFinder [8] offers an interactive visualization of relationships between
resources by querying SPARQL endpoints from the client. RelFinder and our
interface are mechanically similar in how they are able to query any remote end-
point. However, Phuzzy.link is intended for creating low-level, human-readable
representations of individual resources in the context of some given triplestore.

Fresnel [11] is an RDF vocabulary designed to universally tackle the prob-
lems of content selection and content formatting for the presentation of human-
readable RDF content. Since Fresnel is geared towards enabling high-level rep-
resentations of resources, it also allows for ‘less relevant’ triples and identifiers
to be obscured from the resulting interface. Our intention with Phuzzy.link is to
show a comprehensive overview of the underlying data without sacrificing any
of the hard RDF information. Setting these differences aside, Fresnel may still
be a suitable vocabulary for our interface and we hope to add support for it in
the future.

Sextant [1] is a web application that explores linked geospatial datasets by
presenting interactive maps with advanced content filtering. It is primarily de-
signed to function as a map-based Geographic Information System. Similar to
our approach, it is capable of importing map content by querying SPARQL end-
points from the client. However, getting Sextant set up to use some arbitrary
dataset can be quite involved as it may require special configuration for an un-
mapped ontology or unexpected predicates and datatypes. Our interface ships
ready to deploy on any SPARQL endpoint without the need for additional con-
figurations, yet also provides simple means to override configurations for ad-hoc
browsing sessions.

Uduvudu [9] is an adaptive UI engine for Linked Data which demonstrates
its flexibility by promoting the design of reusable design components for Linked
Data user interfaces. Whereas the Uduvudu framework does not provide support
for extensions to reason on input data, our system enables plug-ins to bind to
arbitrary triple-related events, e.g., responding to triples grouped by common
predicates, object datatypes, language tags of literals, and so on. Furthermore,
Uduvudu loads content into a viewing frame while the browser page itself remains
at a static URL. Our system acts as a sort of third-party pseudo-dereferencing
interface by constructing the human-readable representation of a resource from

3http://lodview.it/

http://lodview.it/


the request URL alone, which contains the location of the target SPARQL end-
point and the URI of the subject node to query.

3 Interface Design and Functionality

The nature of datasets across today’s Linked Data cloud is diverse and unpre-
dictable. We believe there is a widespread consensus that many of the Web’s
current general-purpose, plug-and-play dereferencing interfaces are limited by
the seemingly inherent one size does not fit all problem. In our approach, we
designed a system that tries to embrace the one size does not fit all problem
by enabling the community to contribute their own plug-ins that extend the
user interface with special styling, settings, and interactive components. In fact,
there is no limitation as to what a plug-in can do once it is active within the
interface, e.g., creating interactive maps, rendering 3D visualizations, making
auxilliary HTTP requests, and so on. We believe that this feature alone makes
our interface highly adaptable to the content of any RDF dataset.

3.1 Initialization

In order to best describe how Phuzzy.link constructs a human-readable represen-
tation of a Linked Data resource, we explain each step of the process by following
a contrived scenario. Suppose a user’s intention is to explore DBpedia, start-
ing with the resource for Vienna, the resource http://dbpedia.org/resource/

Vienna. We begin by constructing a URL in the format given by the simple API
documentation shown in Table 1 for the /browse action. For the parameters
endpoint and resource, we plug in the URL for DBpedia’s SPARQL endpoint
http://dbpedia.org/sparql and the URI for the resource we are interested
in. This yields the URL http://phuzzy.link/browse/http://dbpedia.org/

sparql#<http://dbpedia.org/resource/Vienna> which when given a GET
request, responds with an HTTP 301 redirect to http://phuzzy.link/browse/

dbpedia.org/sparql#<http://dbpedia.org/resource/Vienna>, which has
removed the origin portion ‘http://’ from the endpoint argument of the URL
path for clarity. The subsequent GET request receives an HTML document re-
sponse from the server, which eventually loads the necessary interface assets
such as its scripts, configurations, and stylesheets. At that point, no other in-
formation has to be exchanged between the client and the Phuzzy.link server.
All information about the resource will be fetched directly from the SPARQL
endpoint by the client via HTTP requests. For this reason, the part of the URL
that identifies which resource to load is contained within the fragment identi-
fier, e.g., ‘#<http://dbpedia.org/resource/Vienna>’. This ensures that subse-
quent changes to the fragment identifier, e.g., by following a link to another node
within the dataset, does not trigger additional HTTP requests to the Phuzzy.link
server. In fact, by the time a resource has finished loading in the interface, the
client’s document already contains all the assets it needs from Phuzzy.link to
continue browsing the same dataset.

http://dbpedia.org/resource/Vienna
http://dbpedia.org/resource/Vienna
http://dbpedia.org/sparql
http://phuzzy.link/browse/http://dbpedia.org/sparql#<http://dbpedia.org/resource/Vienna>
http://phuzzy.link/browse/http://dbpedia.org/sparql#<http://dbpedia.org/resource/Vienna>
http://phuzzy.link/browse/dbpedia.org/sparql#<http://dbpedia.org/resource/Vienna>
http://phuzzy.link/browse/dbpedia.org/sparql#<http://dbpedia.org/resource/Vienna>


Fig. 1 The interface view for dbr:Vienna. At the very top, we see the configuration,
settings, and plug-ins being used for this session. Below that, information about the
resource is listed for the rest of the document. The text and map box near the top
of this section represent the abstract for this resource, determined by the plug-ins
phuzzy-info and phuzzy-geo, which have been initialized with arguments that dictate
which predicates to use for obtaining the summary text and geographic coordinates,
respectively.



Method, URL and Description

GET /browse/:endpoint#:resource

Loads an interface that will ultimately query the given endpoint URL (using the
HTTP protocol by default) for triples about the given resource (either a prefixed
name or an absolute IRI enclosed by angle brackets < >)

GET /config/:endpoint

Fetch the server’s JSON config file associated with the given endpoint

PUT /config/:endpoint

Replace the server’s JSON config file for the given endpoint. This request must
originate from an IP listed in the DNS A or AAAA records for the given endpoint’s
hostname

GET /plugin/:name@:version Accept: application/json

Fetch the asset manifest for the plugin given by its npm name and version
(npm is a package manager for JavaScript). The asset manifest is sourced from its
package.json file

GET /plugin/:name@:version Accept: text/html,*

Describe the status of this plugin, i.e., whether or not it is installed on the server
and ready to be loaded in an interface. This is also where a user can request the server
install a given plugin

GET /plugin/:name@:version/:asset

Fetch the asset file contained within the given plugin

Table 1 The HTTP API for interacting with http://phuzzy.link/

Once the DOMContentLoaded4 event is fired, the interface script parses the
current URL and then starts fetching all the assets it will need to browse an end-
point. For our DBpedia Vienna scenario, the endpoint URL is given by ‘dbpe-
dia.org/sparql’ so the script will GET request ‘/config/dbpedia.org/sparql’
to download a JSON config file that describes several options to use when
browsing this endpoint including: the URL for a JSON-LD file containing a
‘@context’ key for the map of prefixes to use when shortening and expanding
IRIs, a list of plug-ins (identified by their NPM name and version; see ‘Plug-in
Support’ in Section 3.2) to load in this version of the interface along with the
initialization arguments for instantiating each plug-in, and options for control-
ling the behavior of the SPARQL requests such as the default LIMIT to use
per SPARQL query when loading triples in multiple chunks. An example for
our contrived DBpedia configuration is shown in Listing 1. Although we cre-
ated a default JSON-LD context for this example, any endpoint that does not
explicitly have its own configuration inherits the default prefix.cc5 JSON-LD
context as fallback. Once the map of prefixes is loaded, the script may auto-
matically change the hash fragment identifier by shortening the IRI to a pre-
fixed name, so the final URL our browser resolves for the Vienna example is
http://phuzzy.link/browse/dbpedia.org/sparql#dbr:Vienna.

4https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded
5http://prefix.cc/context

http://phuzzy.link/
http://phuzzy.link/browse/dbpedia.org/sparql#dbr:Vienna
https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded
http://prefix.cc/context


{
"context": "http://phuzzy.link/context/default",
"order": ["rdf:*", "rdfs:*", "dbo:*", "dbp:*"],
"settings": {

"language": "en",
"locale": "en-US",
"limit": 128

},
"plugins": [

{"name": "phuzzy-xsd", "version": "^0.0.1"},
{"name": "phuzzy-language-filter", "version": "^0.0.1"},
{"name": "phuzzy-colored-prefixes", "version": "^0.0.1", "args": {"palettes": 6}},
{"name": "phuzzy-info", "version": "^0.0.1", "args": {

"predicates": ["http://dbpedia.org/ontology/abstract"]
}},
{"name": "phuzzy-geo", "version": "^0.0.1", "args": {

"wkt_predicates": ["http://www.w3.org/2003/01/geo/wgs84_pos#geometry"]
}}

]
}

Listing 1 Our contrived JSON config for DBpedia, available at http://phuzzy.link/
config/dbpedia.org/sparql

Only after the prefixes have been loaded and all plug-ins have been initial-
ized, the interface begins to query for both outgoing and incoming triples that
belong to the given node. As SPARQL results arrive to the client, our Web ap-
plication constructs the interface’s document elements dynamically. During this
loading phase, plug-ins that have bound to certain triple-related events will be
fired so that they may mutate elements with custom styling and interaction re-
sponses. For example, the phuzzy-geo plug-in binds to the predicate event for
‘http://www.w3.org/2003/01/geo/wgs84_pos#geometry’ so that it may inter-
cept the triple’s geometry string literal and render a supplemental map view in
the summary box at the top of the page.

3.2 Plug-in Support

The initial release of our interface supports plug-ins that have been uploaded to
the public NPM6 repository. This technique simplifies plug-in management since
versioning, namespacing, package manifest/details, and hosting are all handled
by the repository. Once a plug-in is ready for adoption, the Phuzzy.link server
needs to ‘install’ its package so that its frontend assets can be bundled, such as
scripts and stylesheets. A user can trigger this action by using the HTTP API
shown in Table 1.

Plug-ins work by binding callback handlers to special event types. In essence,
plug-ins can choose to be triggered for triples that contain specific predicates,
term types, datatypes, and so forth. This approach allows plug-ins to remain
simple and focus solely on code that is specific to their stlying and interaction.

To give an example of how a plug-in can be used and its effect on the user
experience, phuzzy-geo renders static geospatial data from the current resource
onto a map display. As seen in Figure 1, this plug-in has interpreted the point
geometry for the location of dbr:Vienna and plotted it to the map. In this ex-
ample, the configuration being used to browse DBpedia (see Listing 1) passes an

6Node Package Manager - https://www.npmjs.com

http://phuzzy.link/config/dbpedia.org/sparql
http://phuzzy.link/config/dbpedia.org/sparql
http://www.w3.org/2003/01/geo/wgs84_pos#geometry


argument to the phuzzy-geo plug-in that specifies which predicates to search
for Well-Known Text strings, in this case it binds to the w3cgeo:geometry pred-
icate.

Other plug-ins include the aforementioned phuzzy-info to load and style
data from abstracts, phuzzy-xsd for XSD datatypes, e.g., to cycle through dif-
ferent representation of dates, phuzzy-language-filter to filter content by
language, and phuzzy-colored-prefixes to color-code prefixes; see Fig 2.

Fig. 2 The figures show a date conversion example using the phuzzy-xsd plug-in as
well as the dataset specific settings for the other activated plug-ins.

3.3 Overriding the Defaults

We believe that users should feel empowered by our interface rather than limited
by its assumptions. For example, if a user is browsing a dataset that has loaded
a prescribed configuration, there may be some options the user would prefer to
modify during their session. We provide a list of query string parameters in Table
2 that allow the user to override configuration options, tune interface settings,
load new plug-ins, and change arguments to existing plug-ins.

For instance, we revisit our previous dbr:Vienna example and override the
language, locale and an argument to the phuzzy-info plug-in by adding the
query string arguments ?language=en &locale=de-at and a URI encoded JSON
string for &plugin.phuzzy-info="...". The resulting interface display is shown
in Figure 3 and is available at http://bit.ly/2v4x8xK.

Fig. 3 The interface display for dbr:Vienna after overriding default configuration op-
tions and settings with the German language, German-Austrian locale, and using
rdfs:comment for the abstract text instead of dbo:abstract. http://bit.ly/2v4x8xK

http://bit.ly/2v4x8xK
http://bit.ly/2v4x8xK


Parameter key Argument value description

language A BCP 47 language tag that dictates which language to prefer,
e.g., when selecting literals to display more prominently.

locale A BCP 47 language tag that dictates which locale to prefer when
formatting dates, times, and so forth.

limit The number of triples to limit in the response of each SPARQL
query.

context The URL of a JSON-LD file that defines the map of prefixes to
use when shortening IRIs.

plugin.plugin name A JSON string to pass as the argument when initializing the given
plugin.

Table 2 A few query string parameters that allow users to override configurations and
settings for the /browse action.

3.4 Browsing and Dereferencing

Similar to systems such as Pubby, our interface displays a resource by showing
its outgoing and incoming properties, i.e., triples that contain the resource IRI in
the subject or object position, in a tabular display that takes the main focus of
the interface body. However, the paradigm we establish in this interface is that
the client is exploring a dataset, not just an independent resource. Therefore,
all IRIs, including predicates and nodes, are rendered as local hyperlinks (using
the URL fragment identifier) such that following a node’s link will load that
resource in the same interface from the current dataset. However, this approach
by itself would sacrifice the expectation that a hyperlinked RDF node should
resolve to its dereferenceable URI. Instead, we offer both options to the client.
Next to each IRI, there is also an external link icon that points to the node’s
actual IRI, allowing the client to dereference the resource in a new tab.

In order to help salient properties be better staged near the top, the
owner of a dataset, or the client itself, may define the order that rows of
triples are sorted in based on predicate IRIs and predicate patterns. For ex-
ample, we find rdf:type should be the first triples shown when browsing our
dataset, followed immediately by any other rdf: properties, then rdfs: prop-
erties, and so on. Our prescribed sort order might look something like this:
["rdf:type","rdf:*","rdfs:*",...]. See Listing 1 for a DBpedia example.

Users who find the interface convenient for browsing an RDF dataset may
eventually wish to access a resource’s underlying RDF code. Theoretically, they
should be able to dereference the URI and with a bit of content-negotiation
acquire the resource in some RDF serialization format. However, this may re-
quire manually setting headers, leaving the browser to use another networking
tool such as cURL, or perhaps their serialization format of choice is simply not
available. Furthermore, dereferencing a node that is external to an RDF dataset
implies that the resulting triples do not reflect the endpoint’s own RDF dataset.
Our solution to this situation is a display toggle that allows end-users to view
the current resource in an RDF serialization format of their choice. As we show



Fig. 4 The RDF source display of our interface that generates RDF from SPARQL
SELECT results, and enables dereferencing with prescribed MIME types.

in Figure 4, serialized text is dynamically generated from already downloaded
SPARQL SELECT results, ensuring that the final output is an accurate reflec-
tion of the triples contained by the encapsulated dataset. This also essentially
bypasses the need to make additional requests for DESCRIBE queries which
are not always supported by SPARQL endpoints. However, we also complement
this feature by enabling the client to dereference a resource using some RDF
serialization format. The client may select or manually enter a MIME type that
will set the Accept header of the HTTP request to the resource URI.

4 Conclusions

In this paper, we presented Phuzzy.link, an extensible Semantic Web browser
that functions entirely on the client-side and within the browser to access re-
mote RDF datasets via their public SPARQL endpoints. Unlike other Semantic
Web browsers, our interface is designed to be adaptable with generic config-
urations, e.g., provided by data publishers, local settings that override these
configurations, and plug-ins that give users control over content selection and
content formatting. So far, these plug-ins work by responding to simple triggers
such as predicates, e.g., dbo:abstract, datatypes, or more complex situations
such as blank nodes that point to geometries. In the future, we plan to identify
and use ontology design patterns [6]. For instance, the presence of the trajectory
pattern [7] could trigger the interface to connect the individual point locations
(lat/long pairs) by lines, thereby interpolating a path. It could also display tem-
poral data or load a time-slider [12]. Consequently, data released using ontologies
that make use of certain patterns can be explored in custom ways; see also [10].
We hope that a community will form around the plug-in-design-pattern interface
to contribute to Phuzzy.link.



References

1. Bereta, K., Nikolaou, C., Karpathiotakis, M., Kyzirakos, K., Koubarakis, M.: Sex-
tant: Visualizing time-evolving linked geospatial data. In: Proceedings of the
2013th International Conference on Posters & Demonstrations Track-Volume 1035,
pp. 177–180. CEUR-WS. org (2013)

2. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J.,
Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the se-
mantic web. In: Proceedings of the 3rd international semantic web user interaction
workshop, vol. 2006, p. 159. Athens, Georgia (2006)

3. Camarda, D.V., Mazzini, S., Antonuccio, A.: Lodlive, exploring the web of data.
In: Proceedings of the 8th International Conference on Semantic Systems, pp. 197–
200. ACM (2012)

4. Cyganiak, R., Bizer, C.: Pubby-a linked data frontend for sparql endpoints.
Url: http://wifo5-03.informatik.uni-mannheim.de/pubby/ (Accessed: 07-26-2017)
(2007)

5. Dadzie, A.S., Pietriga, E.: Visualisation of linked data–reprise. Semantic Web 8(1),
1–21 (2017)

6. Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on ontologies,
pp. 221–243. Springer (2009)

7. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler,
P., Dean, M., Kolas, D.: A geo-ontology design pattern for semantic trajectories.
In: International Conference on Spatial Information Theory, pp. 438–456. Springer
(2013)

8. Lohmann, S., Heim, P., Stegemann, T., Ziegler, J.: The relfinder user interface:
interactive exploration of relationships between objects of interest. In: Proceedings
of the 15th international conference on Intelligent user interfaces, pp. 421–422.
ACM (2010)

9. Luggen, M., Gschwend, A., Anrig, B., Cudré-Mauroux, P.: Uduvudu: a graph-aware
and adaptive ui engine for linked data. In: LDOW@ WWW (2015)

10. Musetti, A., Nuzzolese, A.G., Draicchio, F., Presutti, V., Blomqvist, E., Gangemi,
A., Ciancarini, P.: Aemoo: Exploratory search based on knowledge patterns over
the semantic web. Semantic Web Challenge 136 (2012)

11. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A browser-independent presen-
tation vocabulary for rdf. In: International Semantic Web Conference, vol. 4273,
pp. 158–171. Springer (2006)

12. Scheider, S., Degbelo, A., Lemmens, R., van Elzakker, C., Zimmerhof, P., Kostic,
N., Jones, J., Banhatti, G.: Exploratory querying of sparql endpoints in space and
time. Semantic Web 8(1), 65–86 (2017)

13. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk-a link discovery framework for
the web of data. LDOW 538 (2009)


	Phuzzy.link: A SPARQL-powered Client-Sided Extensible Semantic Web Browser

