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ABSTRACT
The research field of scientometrics is concerned with mea-
suring and analyzing science. In practice, this is often done
by restricting the impact of publications, journals, and re-
searchers to a mere frequency. However, scientific activities
(co-publication, citation, labor mobility) display clear spa-
tiotemporal patterns, and such patterns have rarely been
considered in traditional scientometrics. In this work we
focus on the study of citations and present a spatiotempo-
ral scientometrics framework to measure the citation im-
pact of research output by taking physical space, place, and
time into account. Specifically, we use the statistics of cat-
egorical places (institutions, cities, and countries), spatio-
temporal kernel density estimations, cartograms, distance
distribution curves, and point-pattern analysis to identify
spatiotemporal citation patterns. Moreover, we propose a
series of s-indices, such as S institution-index, S city-index,
and S country-index to evaluate a scientist’s impact as a
complement to non-spatial citation indicators, e.g., h-index
and g-index. In addition, we have developed an interactive
web application which allows users to visually explore re-
search topics, authors, publications, as well as the spread of
citations through space and time. Our work offers insights
on the role of location in scientific knowledge diffusion.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Scientific Databases—
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1. INTRODUCTION
The power of knowledge and new ideas largely depends

on how they spreads out. Some great research findings were
forgotten for decades, some spread slowly, while others take
the world by storm. Research activities may initially start
from a certain region or several places in the world and then
spread to other places thus displaying spatiotemporal pat-
terns. In Nature News, van Noorden has discussed that only
a few number of cities and metropolitan areas in the world
are listed either by ranking the number of publications, or
by measuring the citation impact, or by geo-locating the ad-
dresses of high-impact journals [34]. In many research areas,
the number of citations is an important criterion to estimate
the impact of a scientific publication. Thus, citation-based
metrics have been widely used to quantify the research out-
put of individual scientists. For example, Hirsch proposed
the h-index as a single number to quantify an individual’s
scientific research output. According to Hirsch, “a scientist
has an index h if h of his or her Np papers have at least h
citations each and the other (Np−h) papers have fewer than
h citations each” [17].

However when measuring the impact of a publication, a
journal, or a scientist, counting the number of citations does
not take into account the geospatial and temporal impact of
the evaluating target. The spatial distribution of citations
could be different even for publications with the same num-
ber of citations. Similarly, some work may be relevant and
cited for decades while other contributions only have a short
term impact. This difference makes it necessary to consider
the spatiotemporal influence when evaluating a publication
or a researcher. For example, a publication which has 300
citations throughout the world may have a higher influence
than a paper with the same number of citations but limited
to a single country. Therefore, a spatiotemporal analysis
framework can provide an alternative perspective to evalu-
ate a publication or a scientist’s influence. How many insti-
tutions have done similar work which cites a famous paper?
Over how many places have the scientific idea contained in a
paper spread out over the years? Is the scientist’s influence
global or local? Does it cross cultural boundaries. What is
the role of physical distance in scientific interactions? Do
important activities in scientific interactions, such as co-
publications and citations, follow the distance decay func-



tion which is a statistical illustration of Tobler First Law of
Geography (TFL): Everything is related to everything else,
but near things are more related than distant things [31].
Can we assume that publications are more likely to be cited
by nearby research institutions than by distant ones?

In this work, we approach these questions by proposing
a theoretical scientometrics framework to evaluate the spa-
tiotemporal citation impact and patterns of scientific publi-
cations and researchers.

2. RELATED WORK
In this section we briefly discuss related work required for

the understanding of our research.

2.1 Metrics for Evaluating Scientific Output
Many metrics exist for evaluating the value of research

output. For publications, the number of total citations is
an important indicator. For individuals, there are many h-
index-like indicators to quantify the cumulative impact. In
[5], nine different variants of the h-index have been com-
pared. Egghe has introduced a g-index as an alternative
measure: “The g-index is the largest number such that the
top g articles received at least g2 citations” [10]. In addition,
the number of significant papers is another optional measure.
However, the choice of the number of citations which is used
to define a significant paper is arbitrary. For example, the
i10-index which represents the number of publications with
at least 10 citations for a research, and has been used in
Google Scholar. While it gives a sense of citation impact,
using only frequency-based metrics is not sufficient to quan-
tify the spatiotemporal citation impact. It also does not
reveal the patterns in which research ideas spread.

2.2 Geospatial Scientometrics
Previous studies show that important scientific activities

(e.g., co-publication, citation, labor mobility) display clear
spatial patterns [12]. The publications are highly clustered
in a few countries and co-publications tend to occur rather
domestically than internationally. The US and UK typically
rank the top two in terms of their share in the world’s pub-
lications and citations. It is unclear to what extent their
excellent performance can be attributed to the advantage of
English language proficiency. When reviewing the spatial
patterns at the city-region level, studies show that most sci-
entific activities are concentrated around major metropoli-
tan areas and a few towns established around major uni-
versities. In [24], the authors show that about 35% of the
total research output was produced by the 30 largest city-
regions, such as London, Tokyo-Yokohama, San Francisco
Bay Area, Paris, New York and Boston, in both 1996-1998
and 2004-2006 time periods based on the Science Citation
Index (SCI) database. Such comparative research presents
the spatial structure and the change of the general system of
world cities of knowledge. The publisher Elsevier using Sco-
pus data ranked the top 10 cities by looking at the average
number of citations that a research paper from a city at-
tracted and analyzed the change of relative citation impact
between 2000-2008 [34]. For mapping the places of authors
who have published papers in high-impact journals, Betten-
court and Kaur analyzed city addresses appearing in Sci-
ence, Nature, and the Proceedings of the National Academy
of Sciences in 1989, 1999, and 2009 and visualize the results

in Google Earth1.
The geospatial effects on collaborative scientific works

have also been addressed by many studies. The spatiotem-
poral constraints and travel costs are considered as main
reasons for the decreasing frequency of research collabora-
tion with regard to an increase in physical distance [20].
By semantically structuring publication data, Hu et al. ex-
plored the co-publication and some other collaborative rela-
tions among scholars distributed at different locations [18].
Some studies found that international co-publications are
cited on average more often than domestic co-publications
[26, 13]. Batty has studied the geographical arrangement
of the highly cited scientists and found a rank-size law ex-
isting in the distributions of highly cited institutions and
corresponding places or countries [4]. In [6], density maps
in geographical space have been introduced into the field of
scientometrics in addition to those in more abstract spaces
for bibliometric mapping [33]. They produced kernel den-
sity maps of European authors who have published highly
cited papers on different subjects based on Scopus and Web
of Science bibliographic databases.

In addition, literature has also discussed other socioeco-
nomic factors that affect the scientific interactions. For ex-
ample, Boschma proposed a proximity framework of phys-
ical, cognitive, social, and institutional forms to study the
scientific interaction patterns. Researchers studied the rela-
tionship between each proximity and citation impact by con-
trolling other proximity variables [7]. Moreover, the change
of author affiliations over time adds complexity to the net-
work analysis of universities. An approach with thematic,
spatial, and similarity operators has been studied in the GI-
Science research community [1].

3. METHODS
In this section we detail the used methods to analyze the

spatial and temporal patterns of citations.

3.1 Analysis for Publications
We first start with analysis methods for publications.

3.1.1 Categorical Place Impact
An intuitive approach to quantitatively measure geospa-

tial impact is based on the hierarchical structure of
categorical places, as well as calculation of how many in-
stitutions, towns/cities, states/provinces, sub-regions, and
countries the citations come from. Multiple classifications of
place hierarchical structures are compared in [27] to classify
geospatial granularity. The goal is to determine the level
of granularity to which the geographical impact of citations
is cognitively understandable to scientists and the public.
Here we only consider three levels of categorical places,
i.e. institution, city/town, and country, since they are the
most common components of addresses used by authors
in their papers, and easy to collect via existing digital
libraries such as the ACM Portal, Elsevier’ Scopus, Arnet-
miner, and Microsoft Academic Search. An example of the
three components in an author’s address is shown as follows:

Department of Geography, University of California Santa
Barbara, Santa Barbara, CA 93106, United States.

1http://www.nature.com/news/specials/cities/
best-cities.html



In many cases one can directly use address-parsing meth-
ods to identify the hierarchical place components for each
address (i.e. city: Santa Barbara and country: United
States), and then perform statistic analysis to measure the
geospatial impact of publications. In other cases, one may
need to use reverse-geocoding transfer location coordinates
to a more approachable address or place name, and then
parse those into different hierarchical place components and
repeat the calculation of categorical place frequencies. Al-
gorithm 1 presents the procedure to identify the hierarchi-
cal place structures of citations for a publication using the
Google Geocoding API2. Furthermore, categorical-place ci-
tation impact measurement can be implemented both in
digital libraries based on different-order administrative divi-
sions3, e.g., using the ADL gazetteer content standards [16],
and on the Web of Linked Data by integrating the ontology
of GeoNames4 with bibliography online web services.

3.1.2 Density Maps and Spatio-Temporal Density
Estimation

Kernel density estimation (KDE) [30] has been widely
used in spatial analysis to characterize a smooth density
surface that shows the geographic clustering of point or line
features. The two-dimensional KDE can identify the regions
of citation clusters for each cited paper by considering both
the quantity of citations and the area of geographical space,
compared to the single-point representation which may ne-
glect the multiple citations in the same location. The ad-
vantage of density maps is that raw address data can be
used without arbitrary aggregations to show the spatial im-
pact results at the urban scale or among inter-urban groups.
To calculate the kernel density, we need to apply geocoding
to convert text-based place names or address descriptions
into coordinates in geographical space. An estimation of
the probability density of citations at the location (x, y) on
two-dimensional map is given by

D(x, y) =
1

nh2

n∑
i=1

k(
x− xi
h

,
y − yi
h

) (1)

where n is the number of citations within a spatial neighbor-
hood of the location (x, y) and h is the bandwidth which de-
fines the spatial neighborhood of smoothing. k is the kernel
functions, e.g., Gaussion kernel, triangular kernel, Epanech-
nikov kernel, or quartic kernel. In practice, we need to pay
attention to what kind of kernel functions and what band-
widths should be chosen for calculating the density of ci-
tations. Generally, the plug-in rule is used for selecting the
Gaussion-kernel bandwidth [28], and the Freedman-Diaconis
rule for other kernels [11], or using data-driven methods
by considering the least squares cross-validation for kernel-
bandwidth selection [29].

The temporal information (e.g., the publication year) of
citations is important as well to detect the trends. There is
a broad range of research on spatiotemporal pattern analy-
sis and visualization techniques that has been discussed in
previous ACM SIGSPATIAL GIS papers [23]. Mapping cita-
tions at different time periods is an intuitive way to detect

2https://developers.google.com/maps/documentation/
geocoding
3http://www.alexandria.ucsb.edu/gazetteer
4http://www.geonames.org

ALGORITHM 1: A procedure to identify the hierar-
chical place structures of citations for a publication.

Input: A set of institutions’ names or addresses (An),
the size n equals to the total number of
citations for a publication.

Output: The array of frequency numbers (FreNump)
for different place granularities.

FreNumpi = 0; /* the frequency of institutions */
FreNumpt = 0; /* the frequency of cities or towns */
FreNumpc = 0; /* the frequency of countries */
forall the institution Ai ∈ An do

/* identifying place structures with geocoding */
PC = Geocode(Ai);
/* denote PC as the geocoding results of place
components */
CountryArray.append(PC.country);
Locality=PC.locality;
L1=PC.administrative level 1;
L2=PC.administrative level 2;
L3=PC.administrative level 3;
if (Locality 6= NONE) then

CityTownArray.append(Locality);
end
else

if (L3 6= NONE) then
CityTownArray.append(L3);

end
else

if (L2 6= NONE) then
CityTownArray.append(L2);

end
else

CityTownArray.append(L1)
end

end

end

end
FreNumpi = Frequency(An);
FreNumpt = Frequency(CityTownArray);
FreNumpc = Frequency(CountryArray);
FreNump = [FreNumpi, FreNumpt, FreNumpc];
return FreNump

the temporal changes of spatial patterns. However, using
only predefined time intervals (e.g., five years) may neglect
the changes within each temporal snapshot, and the division
of citations period is also an arbitrary choice. In this work,
we propose to create a three-dimensional map of citations
in space-time by using spatio-temporal kernel density esti-
mation (STKDE) which simultaneously captures both the
spatial patterns and temporal changes. Such STKDE tech-
niques have been used in crime clustering analysis[8, 25], in
space-time trajectory analysis[9], and in space-time visual
analytics [2].

The formula for calculating spatio-temporal density is
an extension of two-dimensional KDE in space into three-
dimensional STKDE in space and time (x,y,t), as:

D(x, y, t) =
1

nh2
sht

n∑
i=1

ks(
x− xi
hs

,
y − yi
hs

)kt(
t− ti
ht

) (2)

where D(x, y, t) is the density estimation at a space-time



voxel, n is the number of citations, hs and ht are the spatial
and temporal bandwidths. And ks and kt are kernel func-
tions for multivariate probability density estimation with
bandwidths hs and ht. In this study, we adopt the Epanech-
nikov kernel described in [30] as

Kd(X) =

{
1
2
c−1
d (d+ 2)(1−XTX), if XTX < 1

0, otherwise
(3)

where X is multivariate dataset, cd is the volume of the unit
d-dimensional sphere: c1=2, c2=π,c3=4π/3, etc. Therefore,
the spatial kernel ks and temporal kernel kt for the citation
STKDE are given by

Ks(u, v) =

{
2
π

(1− (u2 + v2)), if (u2 + v2) < 1
0, otherwise

(4)

Kt(w) =

{
3
4
(1− w2), if w2 < 1
0, otherwise

(5)

The results of STKDE are volume data, i.e., 3D-grids.
The visualization of such STKDE directly would require
four-dimensional space because of their volumetric data
structure consisting with two-dimensions for the geographic
space, one for the time and another one for the density es-
timation scalar. Such volume visualization is not very com-
mon in GIScience but very popular in geophysics, geology
and medical science, which are common applications of com-
puter graphic techniques [21]. The three main approaches
for volume visualization are (1) direct volume rendering by
assigning color and transparency to voxels; (2) isosurface
that is the equivalent of isoline connecting points of equal
value on a two-dimensional map; and (3) volume slicing by
planes. The comparison of three methods and more exam-
ples of volume visualization are presented in [8, 25, 9]. To
sum up, the use of STKDE offers a novel way to understand
the spatio-temporal trends of citation impact.

3.1.3 Cartograms Maps
While the KDE approach can show the “hot regions” of

citations, it may still be difficult to identify some regions
which have a high number of citations in a global map view.
For example, a large number of publications and citations
are distributed in European countries whose areas are com-
paratively smaller than countries such as the United States,
China, and Australia. The KDE results may be different if
one changes the kernel or the spatial resolution. In addition,
as we have discussed above, the geographical distribution of
research institutions is heterogeneous in space, and some re-
gions will always display high density of citations. What
we would like is a self-explanatory visual representation to
highlight the spatial distribution of citations in one global
map. Cartograms are maps in which the size of geographic
regions such as countries or states appear in proportion not
to the areas but to their statistical property, and have been
widely used in the representation of census results, elec-
tion votes, disease incidence, and many other socioeconomic
data. In this paper, we introduce Gastner and Newman’s
diffusion-based method for producing citations cartograms,
which bring the linear diffusion functions in physics to the
calculation of density-equalizing projections [14]. A com-
mon diffusion equation and the velocity field are expressed
as below:

∆2ρ(r, t)− ∂ρ(r, t)

∂t
= 0 (6)

v(r, t) = −∆ρ(r, t)

ρ(r, t)
(7)

where ρ(r, t) is a density function and v(r, t) is the velocity at
the geographic location r and time t, and ∆ρ is the gradient
of the density field.

The calculation of the cartogram involves solving the par-
tial differential equation (6) for ρ(r, t) and then calculating
the corresponding velocity field. More detailed algorithm of
solving the equation in Fourier space can be found in [14].
The cumulative displacement vector r(t) (indicating both
distance and direction) of any point on the map at time t
can be calculated by integrating the velocity field.

r(t) = r(0) +

∫ t

0

v(r, t′)dt′ (8)

In the limit t→∞, the set of displacements of all points
on the original map defines the cartogram. Finally, the car-
togram is derived by moving all geometric points of bound-
aries in such a way that the net flow passing through them
is zero at all times with the objective of equalizing density
during the diffusion process. Multiple open-source codes
and tools of making diffusion-cartogram are available at Dr.
Mark Newman’s website5. Before applying this method, we
need to choose the resolution of grids and the starting den-
sity ρ which will affect the resulting shapes of cartograms.
We can try different kernels for calculating density and dif-
ferent grid size to find a resulting map with good readability
of local distortion.

3.1.4 Distance Distribution Curves of Citations
As we have mentioned above, scientific activities such as

co-publications between institutions have often been con-
stricted by geographical proximity [20]. Here we are also
interested in the role of physical distance (using great-circle
distance in two-dimensional geographical space) on citing
activities. By plotting the distance distribution curves such
as probability density functions (PDF) or cumulative dis-
tribution functions (CDF) of citation distance between the
cited institution location and the citing location, we can get
a sense whether the geographical proximity indeed affects
citations or not. Moreover, we quantitatively evaluate the
spatial impact of publications. To this end, we scale the
CDF by multiplying the total number of citations, which
will describe not only the citation probability to be found at
distance less than or equal to a value, but also the quantity
of citations given by

C(D) = Ntotal × Prob(D <= d) (9)

For example, let us assume that two papers have the same
probability distribution of citation distance, but varying in
the total number of citations. The paper having larger quan-
tity should indicate larger spatial impact at the same dis-
tance. In addition, we can compare the pairwise quantiles
at critical distance intervals from CDFs, e.g., 50, 95, and
100 (largest), and get the corresponding counts of citations,
denoted as (Cp, dp), i.e., Cp citations occur within the p
quantile distance dp.

3.1.5 Spatial Point Pattern Analysis
A citation associated with an institution location being

converted into a geographical coordinate can be taken as a

5http://www-personal.umich.edu/ mejn/cart/



point-event in geographical space. Therefore, we can make
use of statistical analysis of spatial point patterns to study
the distribution of citations for publications, to answer ques-
tions about spatial patterns as well. For example, does a
distribution of citations exhibit clustered or dispersed pat-
tern? Where are the hot-spot regions in which a publication
has a high number of citations and is surrounded by other
institutions with high values of citations as well.

There are several approaches for spatial clustering or hot-
spot analysis, such as K-means, spatial scan statistics [22],
Moran’s I, Geary’s C, Getis-Ord’s General G, and Anselin’s
LISA methods [3]. They are categorized as global or lo-
cal indicators for detecting clusters and the results may
vary with different definitions of neighbors (distance-based
or topology-based) and distance matrix, e.g., event-to-event
distance, or quadrant-center-to-event distance.

In this study we firstly introduce the mean of citation-to-
nearest-citation distance (MC2NCD) to identify the overall
spatial citation pattern for publications. The MC2NCD is
actually an example of nearest-neighbor analysis in spatial
statistics given by

Dmin =
1

N

N∑
i=1

dmin(ri) (10)

where Dmin is MC2NCD for a publication, N is the total
number of citations and dmin(ri) is the nearest-neighbor dis-
tance for a citation at the location ri.

Compared with the expected value under completely spa-
tial randomness (CSR) distribution, we define an average
nearest-neighbor-distance (ANND) index given by

ANND =
Dmin

De
(11)

De =
0.5√
N/A

(12)

where De equals the expected mean of nearest-neighbor dis-
tance in the CSR simulation process such that the points
are assumed to locate anywhere within the study area; and
A corresponds the area of minimum enclosing bounding-box
or a convex hull around all citation-points, or it can be a
geographical context-awareness value of land-area without
considering ocean regions.

If the ANND value is less than 1, the citation pattern ex-
hibits clustering; and if the index is greater than 1, the trend
is toward dispersion; while ANND equals 1 and it should be
a random spatial distribution. To test the hypothesis, we
can calculate the z-score static for the ANND index defined
as

z =
Dmin −De

σ
(13)

where σ is the expected standard deviation of mean-nearest-
neighbor distance under the CSR process. The z-scores and
p-values returned by the spatial-point-pattern analysis algo-
rithm tell us whether we can reject that null hypothesis of
CSR or not.

Furthermore, several multi-distance-based statistical tests
such as K-, F- and G-functions have been proposed for
the quantitative analysis of spatial point patterns compared
with the null hypothesis of CSR [19]. Ripley’s K-function
illustrates how the spatial clustering or dispersion of point-
event changes when the neighbor-distance varies. Applied

to citation-point-pattern analysis, the observed frequency
distribution of citations within multi-distance bands is com-
pared to a theoretical Poisson distribution. Both F- and
G-function are nearest-neighbor-based approaches. But F-
function is based on the distances between randomly chosen
points (not the location of any event) and their nearest-
neighbor events, while the G-function is based on the dis-
tances between the nearest-neighbor events.

In this research, we implement the G-function test with
Monte Carlo simulations under CSR in Matlab for analyzing
citation-event patterns because this technique only needs the
locations of citations and neighbor-distance matrix that we
already have from previous analysis of MC2NCD, instead
of generating other arbitrary points in geographical space.
The G-function is defined as

Ĝ(d) =
#{dmin(ri) 6 d, i = 1, ..., N}

N
(14)

where # is the count of citations, so Ĝ(d) represents the
proportion of citations within the event-to-nearest-event dis-
tance dmin(ri) no great than given distance cutoff d.

Different spatial patterns show different shapes of G-

function curves. Ĝ(d) rises gradually up to the distance
at which most events are spaced and then increase rapidly

for evenly-spaced events, while Ĝ(d) rises rapidly at short
distances and then levels off at larger d-values for clustered
events. We suggest using such approach to examine the ob-
served spatial distribution patterns of citations comparing
with the expected empirical distribution under CSR.

3.2 Geospatial Index for Individual Scientists
All the techniques introduced above are focusing on the

analysis of geospatial citation impact for a publication. In
this section, we apply the analysis for an individual sci-
entist’s cumulative geospatial impact. Just as the popu-
lar h-index or g-index to quantify an individual’s overall
scientific impact, we are interested in meaningful and eas-
ily computable indicators as a series of geospatial-indices.
In addition, the spatiotemporal framework above actually
contains two categories: space-based and place-based meth-
ods. In human discourses, people usually refer to place de-
scriptions for the social and culture understanding of the
world rather than spatial coordinates, because space is ab-
stract while the place is more tangible [32, 15]. There-
fore, we would like to propose three categorical-place-based
s-indices: S institution-index, S city-index, and S country-
index to characterize the geospatial impact of individual sci-
entists. Based on our exploratory analysis of publication ci-
tations, we find that generally the magnitude of institutions
and cities to which the publications have been cited are sim-
ilar, and both of them are larger than the number of citing
countries. This makes sense since cities and institutions are
in a finer geospatial scale, and the total counts of institutions
and cities are obviously larger than the number of countries
in the world; also scientific publications may not appear in
all countries. Thus, we propose different approaches for the
s-indices for different granularities of place.

• A scientist has a geospatial-index S country if
S country of his or her Np papers have been cited in
at least S country countries.

• A scientist has a geospatial-index S city if S city of his
or her Np papers have been cited in at least (S city)α



cities/towns.

• A scientist has a geospatial-index S institution if
S institution of his or her Np papers have been cited
in at least (S institution)β cities/towns.

The values of power-parameter α, β could be varying in
different fields of research and their ranges need further em-
pirical studies left for future work. For a given individual
researcher, one expects that all these s-indices should in-
crease over time but not all papers will eventually contribute
to them. Some papers with limited local citations will not
contribute to the growth of the s-index. Such index is a rela-
tively stable measure since it will not be affected by the total
number of papers, by self-citations, or by single exceptional
papers with very high (or low) citations.

Based on the address-parsing method introduced in algo-
rithm 1, we can calculate the s-indices for individual scien-
tistis by identifying the components of citations.

4. EXAMPLES AND EXPERIMENTS
In this section, we apply the proposed methods to under-

stand the spatial and temporal citation patterns to a sample
of scientific publications from different domains. We provide
a general overview and then focus on Tobler’s famous first
law of geography paper [31] in detail.

4.1 Datasets
To illustrate the effectiveness of the proposed spatiotem-

poral scientometrics framework, experiments need to be con-
ducted to analyze existing publication citations. However,
popular bibliography database such as ACM Portal, Thom-
son ISI Web of Science, and Google Scholar Search do not
support the massive direct download of citations and au-
thor affiliations although they have more complete bibliog-
raphy data. Therefore, we selected Microsoft’s Academic
Search (MAS) 6 as the publication data source as it has
more complete information about the authors’ profiles (es-
pecially affiliation information). Although the citations on
MAS are by far not as complete as other academic bibliogra-
phy database, the downloaded citation data can still provide
a demonstration for our analysis framework.

Our test dataset contains 20 papers from between 1965-
2008 published in different sub-fields, such as geography,
ecology, physics, linguistics, and computer science. The cri-
teria for selecting these papers relies on whether most of
their citations (approximate 90%) have the first author’s
affiliated institution information, which is necessary in our
experiments. The papers are sorted according to their cita-
tions showed in Table 1 and they have 16165 citation records
and institution addresses (including duplicate information
referring to authors from the same organization) in total.
The paper most frequently cited within the set has received
4544 citations.

4.2 GeoSpatial Distribution Results
To better understand the geospatial patterns of citations

for these papers, we explore different spatial analysis tech-
niques introduced above to present the diffusion of scientific
ideas. Using the categorical-place measurement, we can de-
tect in how many institutions, cities/towns, and countries

6http://academic.research.microsoft.com

Figure 1: The numbers of citations and the corre-
sponding counts of places.

a publication has been cited. For the most cited papers,
we find that they also widely spread out to many places
(Figure 1). Some countries like US, UK, Germany, and
China are more likely populated because of their higher sci-
entific productivity (see Table 1). Note that all papers in
our sample are in English. One could argue that papers
written in other languages may have limited international
scope but still be highly cited domestically. In addition,
based on our experiments, the number of institutions to
which the citations have spread could be derived from the
number of diffused countries by 0.476 × N1.71

country with the
goodness of fit R2 = 0.97, which is similar to the result of
cities 0.335 × N1.76

country with R2 = 0.98. Such exploratory
study offer insights on how to set the value range of power-
parameters α and β in categorical-place s-indices.

Figure 2: The temporal trends of citations of 10
most cited papers in the dataset.

As we discussed before, papers having the same number
of citations may have different spatiotemporal impacts. For
example, in the dataset, paper1 (ID=1) and paper2 (ID=2)
share the same number of 12 citations, but paper2 has spread
over 9 institutions, 8 cities and 6 countries. In this case, we
can argue that paper2 has a higher geospatial impact.

When adding time-intervals to the statistic, the temporal
variability of citations is also interesting. Figure 2 shows
the temporal trends of the citations of the most cited papers



Table 1: Publication dataset and their total number of received citations, spreading institutions, cities/towns
and counties

PaperID # Citations # Institution # City # Country Top5 Citing Countries

1 12 3 3 2 UK,US

2 12 9 8 6 US,China,South Korea,Singapore,Germany

3 15 13 13 7 US,Germany,UK,Spain,China

4 24 19 18 11 UK,US,China,Singapore,Canada

5 30 11 11 8 US,Argentina,Germany,Italy,Portugal

6 50 41 41 15 Germany, US,Canada, Japan,Switzerland

7 162 109 100 25 US,Canada,Australia,China,Italy

8 163 95 91 22 US,Germany,UK,China,The Netherlands

9 199 125 110 28 US,UK,China,Italy,Brazil

10 200 139 132 29 US,China,UK,Canada,Italy

11 320 206 185 39 US,UK,Italy,Germany,The Netherlands

12 393 152 138 37 Italy,US,Japan,Germany,France

13 557 284 241 41 US,China,UK,Australia,Canada

14 713 391 332 58 US,Brazil,UK,Canada,Italy

15 837 398 337 57 US,Australia,UK,Canada,Spain

16 1308 470 385 51 US,Canada,UK,China,Italy

17 1346 530 407 55 US,China,UK,France,Germany

18 2383 707 560 62 US,UK,Germany,Canada,Australia

19 2897 644 507 61 US,UK,Italy,Germany,Spain

20 4544 1095 788 81 US,China,UK,Germany,Spain

in our datasets. Some papers were cited directly following
the publication year and peaked soon, while others may lag
behind but will grow in citation numbers eventually.

In addition, we are interested to understand if the physical
distance affects the citation frequency. Firstly, we calculate
the average-citing distance and largest-citing distance for all
papers. The average of large-citing distance among these 20
papers is 16000 kilometers,which approximates the distance
between New York and Sydney. Secondly, we test whether
the distribution of citing-distance follows the distance-decay
functions by measuring the goodness of fit to the power-
law or exponential-law functions (Table 2). At least in our
empirical studies, we did not find obvious distance-decay
characteristics in citing-distance distributions. Thirdly, we
compute the mean of citation-to-nearest-citation distance
(C2NCD) and the largest-C2NCD, as well as the average
nearest-neighbor-distance (ANND) index, to determine that
the citations exhibit clustered or dispersed spatial patterns.

4.3 Case Study with One Paper
Next, we focus on the analysis of the impact of one pa-

per to demonstrate the methods introduced in Section 3.1.
we have chosen the paper written by Waldo Tobler in 1970
[31], which is known as The First Law of Geography. It has
670 citation records in the database of Microsoft Academic
Search (> 2200 according to Google Scholar) and we have
collected 557 records after data cleaning for those lacking
location information. The citations are spread out over 284
institutions, 241 cities/towns and 41 countries (Figure 3).
The concentration of citations can be found in California,

and around the northeast of the US, and in central Europe
as well as in China. In the next step we generated the car-
togram by country as shown in Figure 4. Such a distortion of
boundaries and areas of land helps us to highlight countries
with relatively high citations for each paper at first sight,
e.g., the enlarged Switzerland and Portugal, versus Spain.
In addition, by adding the time (citation-year) to the anal-
ysis, Figure 5 depicts the spatiotemporal distributions of
citations and the resulting STKDE visualization in a space-
time cube. This novel type of analysis offers the possibility
to simultaneously detect the citation patterns through space
and time.

To explore the the role of physical proximity in cita-
tions, we plotted the scaled cumulative distribution func-
tions (CDF) of citation distance, and the histogram of ci-
tation distance (see Figure 6). The TFL paper has 279
citations occurring within the average-citing-distance 8755
km and all within the largest-citing-distance of about 16000
km. We also notice that the distance-distribution of cita-
tions does not follow the decay function since it has a higher
frequency at larger distances.

We also tested whether the spatial patterns of its citations
is clustered. Two approaches can be used: the ANND index
and the G-function, and both methods need to be compared
with the Monte Carlo simulations under CSR. Firstly, the
ANND index for this paper is 0.091 and the corresponding z-
score is -38.65 (Figure 7). Given such a value, there is a less
than 1% likelihood that this clustered pattern could be the
result of spatial randomness. Secondly, by plotting the G-
function with the nearest-neighbor distance of citations, we



Table 2: The results of different citing distances, nearest-neighbor distances and ANND index

PaperID (#,ACD) (#,LCD) (#,MC2NCD) (#,LC2NCD) Distance Decay ANND

1 (11,282) (12,5571) (9,0) (11,4550) No 0.8487

2 (6,4059) (12,16019) (6,123) (11,2437) No 0.4959

3 (8,14762) (15,18755) (9,244) (14,4905) No 2.6696

4 (12,8486) (24,12936) (12,231) (23,1523) No 1.267

5 (17,9131) (30,10754) (25,0) (29,1586) No 0.9735

6 (26,568) (50,10177) (24,71) (49,3917) No 0.4632

7 (82,3568) (162,16861) (81,1) (161,3763) No 0.28

8 (82,8642) (163,16798) (100,0) (162,3779) No 0.2645

9 (101,5259) (199,18710) (111,0) (198,2250) No 0.2141

10 (100,3953) (200,18666) (100,4) (199,2345) Yes 0.2357

11 (161,5676) (320,17043) (177,0) (319,2342) No 0.1548

12 (203,14017) (393,18710) (325,0) (392,3479) No 0.1104

13 (279,8755) (557,16908) (399,0) (556,1793) No 0.091

14 (357,6255) (713,18620) (464,0) (712,1684) No 0.066

15 (421,14906) (837,18178) (610,0) (836,1850) No 0.06

16 (654,5488) (1308,17042) (1243,0) (1307,1298) No 0.037

17 (674,6277) (1346,18630) (1077,0) (1345,3581) No 0.0363

18 (1206,4326) (2383,18742) (2067,0) (2382,1141) No 0.0215

19 (1449,5081) (2897,19023) (2658,0) (2896,1586) No 0.0172

20 (2272,5829) (4544,18710) (4150,0) (4543,1752) No 0.0111

Figure 3: Spatial distribution of citations.

can make the same conclusion that this clustered pattern is
significantly different from the Possion point process under
CSR.

5. APPLICATION
To give a dynamic visualization of the geospatial impact

of scientific outputs, we have developed an interactive web
application, called Citation Map7, which allows users to vi-
sually explore spatial patterns of citations. By integrat-
ing Microsoft’s Academic Search and OpenStreetMap, the
mashup-application allows users to search publications and
their corresponding citations through topic keywords or au-

7http://stko-work.geog.ucsb.edu:8080/map

Figure 4: Cartogram of citations by country.

thors’ names, to geolocate publications using the first au-
thor’s institution, to dynamically map citation information
all over the world, to discover the top-ten authors who have
cited a publication most frequently, and to share publication
and citation information through social media (Figure 8).

6. DISCUSSIONS
This analysis framework relies on the first author’s loca-

tion where the scientific work is assumed to be created or
diffused. However, this assumption could bring some poten-
tial biases. Firstly, the first author’ location might not be
the actual place where the research has been conducted con-
sidering the contributions of other co-authors or grant issue.
Secondly, the authors may change their institutions when
they visit or move to another institution and some authors



Figure 5: Spatio-temporal distribution of citations
and slicing volume-rendering visualization.

Figure 6: Cumulative citation-distance distribution
and Histogram of citation-distance (binned at 1km).

Figure 7: Cumulative citation-distance distribution
and Histogram of citation-distance (binned at 1km)

Figure 8: The interface of the CitationMap website.

have simultaneously different addresses, or joint appoint-
ments in different countries. Thirdly, the spread of citations
to other institutions could also appear when the co-authors
cite their own previous work in different organizations.

In addition, given the volume limitation of the citation
dataset in our experiments, it is insufficient to draw a
more general conclusion about the value distributions of the
geospatial measures for papers and s-indices for individual
scientists.

Last but not the least, each bibliographic database covers
only part of papers from a scientist and part of all citations
of a paper, and therefore integrating multiple bibliographic
sources may yield more realistic and general impact pat-
terns.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a spatiotemporal scientomet-

rics framework to explore the citation impact of publica-
tions as well as individual researchers. Compared with ex-
isting scientometrics approaches which often focus on the
number of citation, this framework takes into account the
distribution of citations in space, places, and time. We pro-
posed a combination of categorical places, spatio-temporal
kernel density estimations, cartograms, distance distribution
curves, and point-pattern analysis to identify geospatial ci-
tation patterns of publications. Based on our empirical ex-
periments, unlike the co-publication activity, we did not find
the distance-decay characteristics occurring in the citation
patterns.

Moreover, We propose three s-indices (S institution −
index, S city − index, and S country − index) to evaluate
an individual scientist’s geospatial impact, which comple-
ment traditional non-spatial measures such as h-index and
g-index. An interactive web application has been developed,
which visualizes the geospaital distribution of research top-
ics, authors, publications, as well as the spread of citations
through space and time.

In the future work, we will collect more citation data
and test the framework in different research domains. We
assume that other spatial citation indices will emerge.
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