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Abstract. Semantic similarity measurement is a key methodology in
various domains ranging from cognitive science to geographic informa-
tion retrieval on the Web. Meaningful notions of similarity, however,
cannot be determined without taking additional contextual information
into account. One way to make similarity measures context-aware is by
introducing weights for specific characteristics. Existing approaches to
automatically determine such weights are rather limited or require ap-
plication specific adjustments. In the past, the possibility to tweak simi-
larity theories until they fit a specific use case has been one of the major
criticisms for their evaluation. In this work, we propose a novel approach
to semi-automatically adapt similarity theories to the user’s needs and
hence make them context-aware. Our methodology is inspired by the
process of georeferencing images in which known control points between
the image and geographic space are used to compute a suitable transfor-
mation. We propose to semi-automatically calibrate weights to compute
inter-instance and inter-concept similarities by allowing the user to ad-
just pre-computed similarity rankings. These known control similarities
are then used to reference other similarity values.
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1 Introduction and Motivation

Similarity and analogy based reasoning are major approaches for the under-
standing of human cognition [1], work on artificial intelligence [2], as well as
information retrieval and knowledge organization. In his classic book Gödel, Es-
cher, Bach - An Eternal Golden Braid, Hofstadter, for instance, lists among
the fundamental building blocks of human intelligence the ability to find simi-
larities between situations despite differences which may separate them [and] to
draw distinctions between situations despite similarities which may link them [3,
p. 26]. The power of similarity lies in providing a graded structure instead of
a rigid Boolean matching. In contrast to many purely syntactical or statistical



measures, semantic similarity computes proximity based on the meaning of com-
pared terms. Semantic similarity measures have a long tradition in GIScience –
partially due to the analogy between measuring distances in geographic space
and computing semantic similarity as inverse distance within a semantic or con-
ceptual space [4]. Over the years, these measures have been applied to compute
the similarity between spatial scenes [5,6], to improve landmark-based naviga-
tion [7], browsing through digital gazetteers [8], to support the classification of
remote sensing data [9], or as additional reasoning service to compare or align
classes, instances, and terms on the (geospatial) semantic Web [10,11,12,13,14].
The meaning of terms, however, is influenced or even determined by the context
in which they are uttered. Therefore, meaningful similarities cannot be deter-
mined without taking additional contextual information into account [15,16,17].
A classical approach to make similarity theories context-aware is by introducing
flexible weights. Most existing approaches to determine these weights are either
too broad, application specific, or do not take users and their requirements into
account [16]. In the past, the ability to adjust similarity theories until they fit a
specific purpose has been one of the major criticisms for their evaluation.

In this work, we introduce a novel, context-aware, and semi-automatic weight-
ing approach to better approximate the user’s needs. The proposed methodology
is inspired by the process of georeferencing images in which known control points
between an image and the geographic space determine the appropriate transfor-
mation. In analogy, we propose to calibrate weights by allowing users to adjust
the similarity of prominent pairs in a ranking. Some of these adjustments can
be done automatically, for instance, by taking the user’s location into account.
Based on the user’s control similarities, we can adjust the weights and hence ref-
erence other similarity values within an ontology. In analogy to geo-referencing,
we call this process semantic referencing. Note, however, that in fact our ap-
proach is an optimization task.

The remainder of this paper is structured as follows. First we introduce re-
lated work on semantic similarity and information retrieval. Then, we discuss the
relation between feature-based and geometric theories from on ontological per-
spective. Next, we introduce the theory of semantic referencing and diagnosticity
measures. We then demonstrate our approach and its limits using an example
from forestry and conclude the paper by pointing to open research questions.

2 Related Work

This section introduces related work on semantic similarity measurement and
provides a definition for information retrieval.

2.1 Semantic Similarity

Similarity, the degree to which entities, concepts, or scenes resemble one another,
is a foundational topic in many areas of cognitive science [1]. Semantic similar-
ity measurement refers to the process of calculating an interval scaled value of



the proximity of the meanings. The importance of similarity measurement for
categorization has been demonstrated through the observation of prototype ef-
fects, which show that objects are classified based on their semantic distance
to an idealized prototype [18]. In GIScience semantic similarity has been an
increasingly important topic, especially with respect to geographic information
retrieval and the geospatial semantic Web [10]. Context awareness is an impor-
tant (though often overlooked) component to any cognitively plausible similarity
theory [11,16,17]. One approach to identify saliency weights for a given context
was introduced by Tversky [19]. This approach uses the notion of diagnosticity,
which indicates that the entity set being compared has a diagnostic effect of mak-
ing certain features more salient with respect to their similarity. Rodriguez and
Egenhofer [11] introduced the Matching-Distance Similarity Measure (MDSM)
for measuring the similarity of geospatial features represented in a feature-based
ontology. MDSM incorporates diagnosticity by utilizing the variability and com-
monalities of features in the ontology to determine their salience weights. These
weights are then used to compute similarity. The Sim-DL similarity server im-
plements a context-sensitive measure for concepts specified in description logics
used on the semantic Web [12]. SIM-DL automatically adjusts the similarity of
relations and primitive concepts based on context parameters provided by the
user. Raubal [7] formalizes context in a similarity measure for geometric concep-
tual space representations by applying weights to the individual dimensions.

2.2 Geographic Information Retrieval

While information retrieval is an interdisciplinary research field including work
on indexing and data storage, we focus on the relevancy relationship used to
judge whether discovered information matches the user’s needs. Formally, as
shown in equation 1, information retrieval is about the degree of relevance be-
tween an object or set of objects and information desired by the user. The infor-
mation sought is specified not only by an explicit query but also by implicit and
inferred information gleaned from the user (e.g., a formal representation of per-
sonalization variables) [20]. In the context of Geographic Information Retrieval
(GIR) the implicit information is spatially context-sensitive [21]. For example,
the location of the user gives a GIR application implicit information that can be
used to refine or otherwise alter search results to a local area.

IR = m[R(O, (Q, 〈I, 7→〉))] (1)

where

– R is the relevance relationship,
– O is a set of objects,
– Q is the user’s query,
– I is implicit information,
– 7→ is inferred information,
– and m is the degree (or certainty) of relevance.

For the purpose of this work we use similarity as relevance relationship, while
the query and compared-to objects are concepts from geo-ontologies.



3 Reification and Similarity

There are at least five major approaches to semantic similarity measurement,
those based on computing feature overlap, on counting transformation steps,
finding alignments, computing graph-distance in a network, and those based on
geometric spaces; see [1,22] for recent overviews. As each of these approaches
has its benefits and drawbacks, most modern similarity theories combine them
to increase expressivity. For instance, similarity theories based on features or
geometry are limited in their ability to handle relationships and are therefore
enriched by network-based measures to form a hybrid model [11,23,12]. While
there has been some work on translating and combining feature-based and geo-
metric approaches in cognitive science [24,25], this topic has not received much
attention in ontology engineering so far – a notable exception being work on on-
tological design patterns [26]. A classic translation example is the representation
of dimensions such as length by sets of nested features [25].

From an ontological perspective, and as recently proposed by Scheider et
al. [27], we argue that features are fictions which result from reifications1 of
(directly) perceivable observations. This shifts the debate from computational
aspects to questions of granularity. Just like with the representation of geographic
features, such as cities or transportation infrastructures, changes happen from
points and polylines to polygons with scale, the description of concepts changes
from features to regions in geometric space. This is the same process as applied
in creating feature hierarchies or complex dimensions2. An ontology of land-
use may list Afforested as feature type, while on a more detailed level the
same notion can be modeled as minimum percentage value on the CrownCover

dimension.
From the perspective of similarity measurement, we can regard feature-based

similarities as coarser grained versions of similarities computed by geometric ap-
proaches. Hence, we can switch between them depending on the required granu-
larity (as long as we can re-reificate the features). Note, however, that as feature-
based similarity computes overlap while geometric approaches compute distance
in a vector space the semantics of similarity changes with the translations.

The role context plays with respect to the relation between similarity and
classification differs depending on whether a feature-based or geometric repre-
sentation is used (figure 1). Diagnosticity in the feature-based representation
assumes an a priori classification to determine weights on features that in turn
are used as inputs for measuring similarity. Hence, classification generates sim-
ilarity. The geometric approach, in contrast, is the opposite – classification is
the result of a distance-based similarity function where context is represented
by saliency weights on the dimensions. Though the dimensions used to measure
similarity may be chosen a priori, the regions that represent the classes are not
(see also [28]). Thus, the definition of classes depends on the context. These dif-

1 We restrict the notion of reification to the objectification of relations or dimensions.
2 This is similar to the shift from prototypes modeled as points in a geometric space

towards regions. However, this involves slightly changing semantics.



Fig. 1. Relationship of similarity and classification in different representations.

ferences have important implications for switching between granularities. If we
consider features as analogous to regions in the geometric representation then
reification can be thought of as the labeling of a particular classification (for a
particular context) in the geometric representation.

4 Semantic Referencing

Semantic similarity measures are especially beneficial for navigating and brows-
ing through large knowledge bases, i.e., for information retrieval, as well as for
ontology engineering. They can be used to reduce the burden of understand-
ing formal definitions [29], are more flexible than rigid (keyword) matching ap-
proaches, and help establishing new relationships between information. All these
use cases, however, require that the similarity measures are cognitively plausible,
i.e., that their rankings correlate with those from human users. As similarity is
highly context sensitive, most recent similarity theories implement various con-
text models [16]. While (semi) automatic weights are applied in many cases, they
can only roughly approximate the similarity drift caused by additional informa-
tion which is not explicitly stated in the user’s query; see section 2.2.

A promising approach would be to combine weights with additional user
feedback, i.e., allow users to influence the weighting process. However, assigning
weights for features or dimensions of large ontologies would be a time consuming
and error-prone task. To have perfect information about the user’s preferences
would require manual weights for all features and dimensions; taking asymmetry
into account would even double the number of required pairwise comparisons.
Finally, a user would have to take abstract decisions such as weighting the sim-
ilarity between Afforested and Artificial which both may be features in a
forestry ontology. Consequently, a feasible solution has to infer weights from
partial information. In principle, there is an infinite number of possible con-
text weights and their combination, which shifts the problem to an optimization
challenge related to classical work from multi-criteria analysis.

In previous work, we have shown how users and domain experts can compare
their own similarity estimations to the rankings produced by a similarity server
to estimate whether the investigated ontology fits their purpose [29]; see figure



Fig. 2. Comparing the SIM-DL similarity estimations with those made by the
user. Users should be able to swap ranks and hence influence weights.

2. So far, this approach had two shortcomings that could not be resolved. First,
the estimations were done by computing rank-correlations (or concordance and
rank-correlation in case multiple users were involved) which are not necessar-
ily cognitively plausible. For example, the relative position in the ranking was
not taken into account. Second, the system could only tell the domain experts
whether the ontology potentially reflects their views or not, but did not offer a
way to adjust the similarity weights produced by the similarity reasoner.

In this work, we propose a method to overcome both shortcomings. First
by replacing Spearman’s rank correlation coefficient with the DIR measure, and
second by allowing the users to swap ranking positions to adjust weights semi-
automatically; see swap in figure 2. DIR is a cognitively plausible dissimilarity
measure for information retrieval result sets. It is based exclusively on result
rankings and therefore applicable independent of the retrieval method. Unlike
statistical correlation measures, DIR reflects how users quantify the changes in
information retrieval result rankings [17]. It is defined as a symmetric function,
which calculates the shift every concept undergoes when a query is posed in
different contexts. A weighting function insures that shifts at the top of the
rankings are emphasized. Note that we do not present abstract features or di-
mensions to the user but selected concepts ranked by their similarity. Moreover,
the user does not need to take pair-wise decisions but directly changes the po-
sition of target concepts in the similarity ranking. These changes are then used
to adjust the feature or dimension weights.

In analogy to georeferencing we call the process in which the weights get re-
computed based on partial information provided by the user the semantic refer-
encing of similarities. Georeferencing is the act of identifying a direct or indirect
relation between an entity and a geographical position in space. In photogram-



metry, control points on the ground are used to fix the scale of the photographs.
This can be simply done by measuring the natural distance between two points
on the ground that can also be identified on the photographs. If a high degree of
accuracy is required, then premarked points on the ground rather than natural
features are used and based on the ground and picture coordinates a transfor-
mation is calculated [30]. While it is useful to think of the user adjustments as
a kind of known control similarities (adequate to the user’s conceptualization),
there are also clear differences between both methodologies. These are grounded
in the fact that semantic referencing has to cope with an arbitrary number of
dimensions, not all of them can be adjusted by swaps in a single ranking, and
that human notions of distance do not necessarily fulfill the metric requirements.

In the following we introduce a basic algorithm schema and diagnosticity
functions for feature-based approaches. To demonstrate that our approach is
generalizable we discuss which extensions are necessary for geometric models.
We also introduce variability and commonality measures for geometric similarity
measures which have not been investigated so far.

4.1 Semantic Referencing for Feature-based Similarity Measures

For reasons of simplification, and in accordance with the classical feature-based
theories, we assume concepts are defined by the intersection of more primitive
ones which in turn can be further decomposed into features. Consequently, we
leave logical negation, disjunction, and relationships between concepts and in-
dividuals aside. In such a representation language role-filler pairs can be repre-
sented as single features such as NextToTransportationInfrastructure which,
as argued above, are reifications. For lack of space, we reduce the feature-based
similarity between concepts to a ratio of common versus distinct features leaving
asymmetry aside. Moreover, we only discuss commonality as diagnosticity mea-
sure and leave variability aside. The notion of asymmetry in Tversky’s contrast
model and variability have been extensively discussed in the literature [11]. Both
can be included in the presented algorithm without major modifications, e.g.,
variability is just the inverse of commonality.

We assume that a user defines a query Q, in our case by selecting a search
concept Cs, using a graphical user interface; for instance the SIM-DL Protégé
plug-in or the semantics-based gazetteer web interface [16,8]. Instead of setting
fixed weights, the task is to infer (7→; see section 2.2) the weights from (explicit
and implicit) information (I) provided by the user. We further assume that
O, the set of objects in the information retrieval definition, is a set of target
concepts ct1, ..., ctn from the examined ontology. Different solutions have been
proposed to determine which concepts should serve as search and target concepts.
The Literature about multi-criteria analysis with partial information proposes to
take examples in which the users are experts. Others propose to use the concepts
which have been mentioned and grouped together most often during ontology
engineering and knowledge acquisition tasks [29]. For populated ontologies, those
concepts with the highest count of individuals may be a good choice as they have
the highest probability to be used subsequently.



Listing 1.1. Basic Algorithm; one swap per turn version.

1 f o r ( f e a tu r e :
⋃

Cti
∪ Cs )

2 computeGlobalDiagnost ic i ty ( // See equat ions 3 , 10 .
3 computeLoca lDiagnost i c i ty ( f e a tu r e ) ) ; // See equat ions 2 , 6 , 8 , 9 .
4
5 f o r (Ct : O)
6 sor tByDescend ingDiagnost i c i ty (Ct ) ;
7 computeS imi lar i ty (Cs, Ct ) ;
8
9 theoryRanking = sor tByDescend ingS imi la r i ty (O) ; −→ [USER]

10 humanRanking = ret r i eveRank ing ( ) ; ←− [USER]
11
12 i f ( computeDIR( theoryRanking , humanRanking ) ≤ th r e sho ld )
13 terminate ; // No weight adjustment r equ i r ed .
14
15 cand idateFeatureL i s t (O) ; // See equat ion 4 and s e c t i o n 4.2 .
16 mod i f yD i agno s t i c i t i e s (
17 humanRanking . swapFrom , humanRanking . swapTo ) ; // See equat ions 5 , 11 .

Listing 1.1 shows the main steps to readjust the weights according to the
ranking changes proposed by the user. First, the diagnosticity of each feature
(f) has to be computed and normalized: see equations 2 and 3.

localDiagnosticity(f) =
|{f |f ∈

⋃
Cti ∪ Cs}|

{|
⋃

Cti ∪ Cs|}
(2)

globalDiagnosticity(localDiagnosticity) =
localDiagnosticity∑fn

f1
localDiagnosticity(fi)

(3)

Next, the features for each concept definition are ordered by their diagnosticity
and the similarity for all search concept - target concept pairs is computed using
a feature-based (or geometric) theory. As shown in lines 8 and 9, the resulting
similarity ranking is presented to the user who can decide to swap two positions
in the ranking (per turn). The user interface has to give the user the possibility
to actively move a concept up or down as the choice of directions matters, i.e.,
the changes are asymmetric. Next, the DIR measure is used to determine how
dissimilar both rankings are and whether an adjustment is necessary.

candidateFeatureList(O) = {f |(f ∈ Cs) ∧ ((f ∈ Csf )
⊕

(f ∈ Cst))} (4)

As indicated in equation 4, only those features are candidates for weight adjust-
ment which appear in the source and one of the target concepts (but not both).
This is not required for theories which support similarity between features/di-
mensions such as SIM-DL or geometric approaches which will be discussed below.

MOD : (x± Csf [0].globalDiagnosticity) ∗ sim(Cs[y], Csf [0])

+ (
x

21
± Csf [1].globalDiagnosticity) ∗ sim(Cs[y], Csf [1])

+ (
x

22
± Csf [2].globalDiagnosticity) ∗ sim(Cs[y], Csf [2]) + ...

x

2n

= sim(Cs, Cst) + 0.01; (5)



Equation 5 shows how the weights are increased (+) or decreased (-) based on
the user’s modifications where Csf is the swapped-from and Cst the swapped-to
concept in the ranking. y is the to-be-compared feature in the Cs list. Instead
of arbitrary changes to multiple weights we use a power function to model the
Max Effect described in cognitive science studies [31]. This effect describes the
tendency to favor a particular reasoning strategy which has turned out to be suc-
cessful in previous similarity estimations and could be compared to the Matthew
Effect in social science. Features which are more diagnostic gain even more diag-
nosticity while the diagnosticity of others increases slower. So far our algorithm
considers local optimizations. It tries to ensure that the weights reflect the swap
in the first place and put less emphasis on other parts of the ranking (which can
still be adjusted in the next turn). Note that modifying the weights does not
always successfully change the ranking or guarantees that the process converges
at all. This is especially the case if the user’s initial conceptualization differs
clearly from the computational representation in the ontology3 or if users take
irrational decisions. In this case the ontology is unsuitable for the given context.
After the adjustment, the new diagnosticity weights are used within the ontology
to better approximate the user’s preferences.

4.2 Measuring Diagnosticity in Geometric Representations

In this section we extend the MDSM measures of commonality and variability
to geometry-based representations.

Case 1 - Commonality We have a set of concepts that are represented as
incomplete vectors (i.e., points) in a continuous multidimensional space. That is,
for any given concept values may be undefined for one or more of the dimensions.
In this case we are interested in determining the diagnosticity of each dimension
based on how many concepts have a value defined for it. Let C = {c1, c2, . . . , cn}
be the set of concepts. The probability p(c, d) that a concept c ∈ C has a value
defined for a given dimension d is equal to the number of concepts defined for d
over the total number of concepts in C. The commonality diagnosticity (CD) of
a dimension d is thus defined in equation 6.

CD =
p(c, d)∑m

i=1 p(c, di)
(6)

Case 2 - Variability We have a set of concepts that are represented as complete
vectors in a continuous multidimensional space. In this case, the concepts are
defined using the same dimensions, but they still differ semantically in that
they are represented by different points in the space. This situation will occur

3 The user does not need to know or understand the formal definitions of concepts
displayed in the ranking which at the same time is a major benefit of our approach
as discussed before.



when representing a set of observations construed as exemplars of a concept (or
in ontological language an enumeration of individuals) and that are measured
using the same methods.

Since there are no differences between the dimensions, diagnosticity is mea-
sured in terms of deviation of the data along the different dimensions. The
semantic interpretation of the deviation depends on whether the data points
represent different exemplars of the same concept (e.g., different definitions of
forest) or in fact different concepts (e.g., forest, woodland, chaparral, etc.). Our
hypothesis is that if a set of instances of the same concept varies little along
one dimension (x) and a lot along another dimension (y) then dimension x is
more salient and therefore more diagnostic. In the case of different concepts the
opposite is true. Intuitively, we want to identify which quality values are most
alike for the instances of the same concept and which ones help us to distinguish
between different concepts.

The proposed method is to compare the mean absolute deviation (MAD) of
the data values (X) for each dimension. To maintain consistency with MDSM
terminology we call the MAD value of a dimension its variability.

MAD =
1

n

n∑
i=1

|xi −m(X)| (7)

The data must first be normalized to [0,1] along each dimension so that the
MADs can be compared. Depending on the data, different normalization tech-
niques may be necessary. In general, a Min-max normalization will be sufficient,
though in the case that the data have a fixed range then the range minimum
and maximum is preferred (e.g., any ratio scaled dimension will have a minimum
value of zero). It is noted, however, that Min-max normalization is sensitive to
outliers. Equation 8 shows the variability diagnosticity (V D) of a dimension for
the case when different instances of the same concept are represented.

V Dsame =
1− MAD(d)∑m

i=1 MAD(di)

m− 1
(8)

V D in the case of different concepts is defined in equation 9.

V Ddiff =
MAD(d)∑m

i=1 MAD(di)
(9)

Combining Commonality and Variability The scenario presented in case 1
will always include different distributions of values along each of the dimensions
as well, so we define a diagnosticity measure for a given dimension d (equation
10) that combines the two measures listed above. However, the VD measure
(see equations 8 and 9) is changed slightly to ignore any undefined values when
calculating the MAD.

diagnosticity(d) =
CD(d)× V D(d)∑m

i=1 CD(di)× V D(di)
(10)



Modifying Diagnosticities for Geometric Representation Equation 11
shows an extended MOD function for calculating new diagnosticities for dimen-
sions in geometry based representations.

MOD : (x + diag(dimP [0])) ∗ sim(Cs[dimP [0]], Csf [dimP [0]])

+ (
x

21
+ diag(dimP [1])) ∗ sim(Cs[dimP [1]], Csf [dimP [1]] + ...

+ (x− diag(dimM [0])) ∗ sim(Cs[dimM [0]], Csf [dimM [0]])

+ (
x

21
− diag(dimM [1])) ∗ sim(Cs[dimM [1]], Csf [dimM [1]] + ...

= sim(Cs, Cst) + 0.01; (11)

Contrary to the feature method (see equation 4), the candidate dimension list
includes all dimensions D shared by Cs, Csf , and Cst, because different concepts
may share the same dimensions but vary in terms of the values along those
dimensions. The diagnosticities of each dimension can be calculated by any of
the methods described above, depending on the application. It compares the
similarities of Csf and Cst to Cs, and constructs two sorted queues, dimP and
dimM based on which of the two target concepts is most similar to the search
concept for each given dimension (see listing 1.2). The queues are sorted by
how large the difference is between the similarities. These queues are used to
generate positive and negative power functions, which are combined and solved
to generate new diagnosticities for each of the dimensions.

Listing 1.2. Determining which dimensions increase/decrease diagnosticity

1 f o r (d : D ) // f o r each dimension
2 fromToSimDiff = sim (Cs[d] , Csf [d] ) − sim (Cs[d] , Cst[d] )
3 i f ( fromToSimDiff > 0) // s im i l a r i t y o f Cs to Csf < Cs to Cst

4 dimP << d , fromToSimDiff // add to + queue so r t ed by d i f f e r e n c e
5 e l s e
6 dimM << d , fromToSimDiff // add to − queue so r t ed by d i f f e r e n c e

5 Application

Data about forest cover in a country are dependent in part on the definition (i.e.,
semantics) of forest used by that country. In order to compare these data across
different countries it is helpful to identify which definitions are more similar
to one another. This similarity information can then be used to evaluate the
degree to which the forest cover data from different countries are comparable.
In this section, we present the usage of the semantic referencing algorithm to
semi-automatically calculate the similarity of different forest definitions. For this
example we use a geometry-based representation, where each forest definition is
represented as a point in a three dimensional space. The three dimensions are
minimum area, minimum crown height, and minimum tree height4.

4 Source: http://www.affrc.go.jp/satellite/shokusei/EOSD/Background/Gyde Lund
Definitions of Forest RAD/DEFpaper.html



5.1 Calculating Diagnosticity

The user first selects control points, which are used to calculate the diagnosticity
of each of the dimensions. For this particular example we assume some domain
expertise on the part of the user regarding forest definitions, so that they have
an internal conceptualization with which they can compare the rankings. Ta-
ble 1 shows a sample selection of control points along with commonality (CD),
variability (V Dsame), and the combined diagnosticity(d) calculations based on
6 sample control points. The minimum crown cover dimension is the most diag-
nostic as it shows a low variability (which is a high diagnostic indicator when
comparing exemplars of the same concept) and high commonality as it is de-
fined for all sample countries. The abstract semantic referencing algorithm can
use any of the three diagnosticity measures to identify which dimension is most
salient; in this case we use the combined measure.

Table 1. Sample forest definition control points and diagnosticities of dimensions

Min area (ha) Min crown cover (%) Min tree height (m)

France 2.0 10.0

Greece 0.5 10.0

Italy 0.2 20.0

Papua New Guinea 100.0 10.0 5.0

Switzerland 20.0

UNESCO 40.0 5.0

Commonality (CD) 0.333 0.5 0.167

Variability (V Dsame) 0.092 0.408 0.5

Diagnosticity 0.096 0.642 0.262

5.2 Iterating Through the Semantic Referencing Algorithm

For this geometry-based representation we assume a semantic distance (dissimi-
larity) between two forest definitions is equal to the weighted Manhattan distance
between the two vector representations where the weights are the diagnosticities.
Similarity is simply defined as 1 - semantic distance. If a dimension is defined for
the source forest but not in the target then the distance is considered maximal
(i.e., 1 on a dimension normalized to [0..1]). If the dimension is undefined for
the source the distance along that dimension is considered to equal zero. Using
this measure we calculate a ranking of the target forest definitions to the source
target, which in our example is the definition of Greek forest with the following
similarity ranking: 1. France; 2. Italy; 3. Papua New Guinea; 4. Switzerland; 5.
UNESCO. The user can choose to accept the ranking or adjust it by moving a
target up or down. Say the user wants to move Papua New Guinea to Italy’s
ranking. Using the geometry-based MOD function (see equation 11) the diag-
nosticity of minimum area is reduced and the diagnosticity of minimum crown
cover is increased, because Papua New Guinea’s and France’s forest definitions
are more similar along the minimum crown cover dimension than Italy’s and



France’s are (and vice versa for minimum area). Similarity rankings are recalcu-
lated using the new diagnosticity values and the above process is reiterated until
the user gets an acceptable ranking, which is then used for similarity measures
on a wider set of forest definitions in a traditional information retrieval setting.

6 Conclusions and Future Work

In this paper we have discussed the relationship between feature-based and ge-
ometric similarity theories from the viewpoint of ontology engineering, defined
diagnosticity for geometric similarity measures, and provided a novel method-
ology for adjusting weights based on user preferences. While the user provides
an explicit query, the main innovation in the semantic referencing approach is
to use implicit information. Instead of presenting abstract feature or dimension
pairs, we propose to let the users adjust precomputed inter-concept similarity
rankings to learn about their contextual preferences and apply the extracted
weights to the ontology.

While this is the first step, our long-term vision is to apply the semantic
referencing methodology automatically based on the user’s similarity estima-
tions as depicted in figure 2. Such approach would be more intuitive and could
be directly integrated into our similarity servers. This, however, would require
more sophisticated and global optimization functions. The challenge in develop-
ing such functions is not to find a working algorithm, but to ensure its cognitive
plausibility. It turns out that weighting approaches have their limitations and
may not be able to model the user’s needs in all cases. The presented work is
based on established and well tested measures, complex optimization approaches
may, however, require changes in the alignment process or flexible distance met-
rics differing among dimensions, and hence, will also require extensive human
participants test. Moreover, the user’s context can also contain additional im-
plicit information to further refining the results. For example, certain character-
istics of geographic feature types may be more or less salient depending on the
country (and language) of origin of the search. The visualization and interaction
with conceptual spaces is also an important field for further research – we believe
that parallel coordinate plots may be an interesting solution to some of these
challenges.

Finally, there are several improvements to make the diagnosticity measures
more robust. First, within the geometric representation there is an assumption
that the dimensions are orthogonal allowing us to measure the variability of each
dimension independently, but this is not necessarily true if there are correlations
between these dimensions. Second, the measure of a domain’s variability based
on a set of property regions in the geometric representation is simplified to a
point measure, which does not consider the structure and size of the regions. One
parameter to consider is the degree and kind of overlap among different regions.
Other measures of diagnosticity such as the information entropy of a set of data
values should be explored and evaluated as well. A region connection calculus
can be used to reify the topology of the regions to feature-based properties and



their relations, thus suggesting a strategy for developing a diagnosticity measure
that encompasses hybrid feature-geometry representations [32].
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