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Abstract. Bias, may it be in sampling or judgment, is not a new topic.
However, with the increasing usage of data and models trained from them
in almost all areas of everyday life, the topic rapidly gains relevance to
the broad public. Even more, the opportunistic reuse of data (traces)
that characterizes today’s data science calls for new ways to understand
and mitigate the effects of biases. Here, we discuss biases in the context of
Linked Data, ontologies, and reasoning services and point to the need for
both technical and social solutions. We believe that debiasing knowledge
graphs will become a pressing issue as these graphs enter everyday life
rapidly. This is a provocative topic, not only from a technical perspective
but because it will force us as a Semantic Web community to discuss
whether we want to debias in the first place and who gets a say in how
to do so?
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1 Introduction and Motivation

The bias-variance dilemma describes the struggle of trying to minimize the two
main sources of error that plague machine learning algorithms in their attempt
to generalize beyond their training data. While this trade-off relation is well
known, it has only recently reached broad public attention due to the mainstream
adoption of machine learning methods in everyday electronics and spectacular
failures of their learned models such as categorizing black people as gorillas or
auto-suggesting to kill all Jews in typeahead search.

While these cases generate the most public outcry, a different type of error
may have subtle but more serious long-term consequences, namely representa-
tional bias such as Google’s image search for “CEO” depicting mostly males.
Even if this might still reflect today’s reality and history, we would not want
an intelligent system to learn this and consequently, for instance, recommend
doctor as a career choice for men and nurse for women [1]. These kinds of biases
are not merely a technological challenge; they are also a social issue.

There are ongoing discussions within the machine learning community about
how to address representational biases (among other kinds), but these discus-
sions have not yet reached the Knowledge Graph and Semantic Web communities
despite representational issues being at their core. We believe that the hetero-
geneity of the Linked Data cloud, i.e., its decentralized nature and contributions
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from many sources and cultures, can offer protections against biases to a certain
degree, but this will come at a cost of increased variances.

Biases in knowledge graphs (KGs), as well as potential means to address
them, differ from those in linguistic models or image classification. Instead of
learning the meaning of a term by observing the context in which it arises within
a large corpus or classifying buildings from millions of labeled images, KGs are
sparse in the sense that only a small number of triples are available per entity.
These triples are statements about the world, not usage patterns. Finally, it’s
important to recognize the term bias has different meanings across communities,
implying that models can be unbiased in a machine learning sense yet simulta-
neously show substantial bias in a cultural context, e.g., when the training data
do not reflect evolving social consensus; we address the latter kind of bias here.

In this vision paper, we describe biases from three different perspectives,
namely those arising from the available data, those embedded in ontologies (i.e.,
the schema level), and finally those that are a result of drawing inferences. We
illustrate each type with a small experiment.

Fig. 1. Coverage of DBpedia (en) in contrast to population density.

2 Data Bias

The sheer size of the Linked Data cloud may lead to the impression that it is
safe from selection biases such as sampling bias. However, the data available to
both open and commercial knowledge graphs today is, in fact, highly biased.
Coverage serves as an illustrative example of the underlying problem. Figure 1
plots more than one million geographically-located entities from DBpedia (en) in
red. These entities, most of them being places such as Ford’s Theater, link actors
such as Abraham Lincoln, to events such as his assassination, to objects such as
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Booth’s weapon. Consequently, the global coverage of places reveals much about
the underlying distribution of non-spatial data as well. The map also shows
Landscan-based estimates of population density. As can be seen, coverage is not
uniform. For Europe, Japan, Australia, and the US, marker density strongly
correlates with population density, whereas this trend breaks for large parts of
Asia, Africa, and South America. At first, one may expect that these results are
reflections of using the English DBpedia version, however, the resulting pattern
largely remains the same when comparing other language versions and data
sources such as GeoNames, social media postings, or even government data [7].

Put more provocatively, we know a lot about the western world and we do so
from a western perspective. Even more, most of what we know about other re-
gions and cultures comes from this same western perspective. This is an artifact
of history, differences in cultures of data sharing, availability of free governmen-
tal data, financial resources, and so forth. The effects are similar to what has
been discussed in the machine learning community with respect to biases in
word embeddings or in image search and tagging. This is not a minor issue. It
translates into biased knowledge graph embeddings that increase dissimilarity
to those less prototypical cases, it influences recommender system and question
answering, and it learns rules from biased training data.

As a substantial part of the Linked Data technology stack is based on open
standards and is available as open source implementations, we hope that a more
diverse set of contributors will form around it, thereby making the Linked Data
cloud more robust to biases, financial incentives, and so forth.

3 Schema Bias

In addition to data bias, knowledge graphs encounter another type of bias at
the schema/ontologies level. Most ontologies are developed in a top-down man-
ner with application needs in mind, or in case of top-level ontologies, certain
philosophical stances. They are typically defined by a group of engineers in col-
laboration with domain experts, and thus also implicitly reflect the worldviews
and biases of the development team. Such ontologies will likely contain most of
the well-known human biases and heuristics such as anthropocentric thinking.
The increasing use of bottom-up techniques such as machine learning to derive
axioms/rules from data will not mitigate these problems as the resulting models
will fall victim to the data biases discussed before. In addition, ontologies may
be affected by other biases such as so-called encoding bias [4].

Anthropocentric thinking and application needs are, for instance, at play in
many of the vocabularies used to describe Points Of Interest. They typically
contain dozens or even hundreds of classes for various sub-classes of restaurants,
bars, and music venues, but only a handful of classes for natural features such as
rivers. Consider, for example, the Place branch of the DBpedia ontology (2015);
although it contains 168 classes, the average in- and out-degree of each class
is only 0.994 when the class hierarchy is visualized as a network. The average
path length is 2.18, suggesting that it is relatively shallow and flat. By running
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PageRank with a teleport probability of 0.85, more than 75% of the classes have
a near zero PageRank score, meaning that much of its expressivity is occupied
by less than 25% of classes. Simply put, the relative importance of classes is
unevenly distributed in the ontology despite its general purpose characteristics.

It is worth noting that many biases are not directly encoded in the ontology
but only become visible when comparing multiple ontologies together with their
respective datasets. For example, DBpedia, GeoNames, and the Getty Thesaurus
of Geographic Names (TGN) all contain a Theater class. From a data-driven per-
spective, one may assume that computing (spatial) statistics for all members of
this class, such as intensity, interaction, and point patterns, would yield similar
results across datasets [8]. However, this is not the case and those indicators will
show very distinct patterns. The reason for this is that GeoNames aims at con-
taining all currently existing theaters, DBpeda contains culturally/historically
relevant theaters, and TGN contains those that are significant for works of art.
Put differently, the dissimilarity in the extension of these classes is an expression
of the implicit biases across the classes despite their common name.

We believe that the multitude of ontologies developed for the Semantic Web
are a strength rather than a weakness as their diversity may help to mitigate
some of the issues outlined above.

4 Inferential Bias

Another potential source of bias arises at the inferencing level, such as reasoning,
querying, or rule learning. To start with a simple but easily overlooked example,
the results of a SPARQL query depend on the entailment regimes (e.g., simple
vs. RDFS entailment). However, the configuration of a particular query endpoint
is outside the control of a data creator or ontology engineer and thus one may
find that multiple endpoints utilizing the same ontologies and datasets, e.g., local
copies of DBpedia, yield different results for the same SPARQL query.

Here we focus on another aspect, namely, the relation of learning a (cor-
rect) model that collides with social consensus. Consider for example, the use
of association rule mining to infer new rules from knowledge graphs[2]. For our
experiment we extracted all popes, US 5-star generals, and US presidents from
DBpedia. These entities have one aspect in common: they are all male1. Running
AMIE+ over this graph results in numerous rules and the following 3 have very
high confidence scores due to a lack of negative examples: (1) if X is a pope,
X is male; (2) if X is a US 5-star general, X is male; and (3) if X is a US
president, X is male. While these rules may be perceived as controversial, they
are all correct. The provocative point we are trying to make here is that these
rules are correct for different reasons. The first case is true by definition of the
concept Pope; hence, the learned rule is suitable for its application. The second
case is an enumerated class as US 5-star general is a historical military rank no
longer in use. Hence, while the rank is not exclusive to men, the rule still applies

1 A triple we had to add to our graph for this example as it is not present in DBpedia
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to all cases despite not being useful since it will not generate new triples. The
third case is most controversial as it applies to the entire training data but does
not align with social consensus. We do not want KG-based question answering
systems to suggest to users that only men can become US presidents in a similar
fashion to today’s systems recommending women to become nurses.

5 Conclusions

In this vision paper, we highlighted the need to establish debiasing knowledge
graphs as a novel research theme for the Semantic Web / Knowledge Graph com-
munity that differs from current mainstream research. We highlighted multiple
sources of bias using small experiments. We believe that the topic is provoca-
tive as it walks the fine line between social responsibility and censorship. Risk
mainly arises from the fact that debiasing itself is not a neutral task but based
on social norms that may differ by countries. Will we develop methods that can
be used for censorship and manipulation? As far as the time horizon is con-
cerned, we believe that this will become an equally pressing issue for the SW
community as it is currently in machine learning and that it should be openly
addressed in workshops or panels. Finally, the topic may also be approached
from a Web Science [5] perspective as well as by considering the interplay of
trust and provenance [6, 3].
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