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Abstract. When interacting with the environment subjects tend to classify 
entities with respect to the functionalities they offer for solving specific tasks. 
The theory of affordances accounts for this agent-environment interaction, 
while similarity allows for measuring resemblances among entities and entity 
types. Most similarity measures separate the similarity estimations from the 
context—the agents, their tasks and environment—and focus on structural and 
static descriptions of the compared entities and types. This paper argues that an 
affordance-based representation of the context in which similarity is measured, 
makes the estimations situation-aware and therefore improves their quality. It 
also leads to a better understanding of how unfamiliar entities are grouped 
together to ad-hoc categories, which has not been explained in terms of 
similarity yet. We propose that types of entities are the more similar the more 
common functionalities their instances afford an agent. This paper presents a 
framework for representing affordances, which allows determining similarity 
between them. The approach is demonstrated through a planning task. 

1   Introduction 

Understanding the interaction between agents and their environment is a fundamental 
research goal within cognitive science. The theory of affordances [1] describes how 
agents perceive action possibilities of entities within their environment, arising from 
both the physical structures of the entities and the agent. A major problem with this 
theory is that it does not account for cognitive and social processes. As argued by 
Chaigneau and Barsalou [2], function plays a prominent role in categorization, which 
also emphasizes the importance of affordances as part of human perception and 
cognition. The process of categorization itself can be explained in terms of similarity. 
With the exception of alignment models such as SIAM [3] most similarity theories 
assume that similarity is a static and decontextualized process. This contradicts the 
definition of affordances as inseparable constructs of agent and environment where 
entities are grouped around functionality. Similarity measures, such as MDSM [4] 
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and SIM-DL [5], are context-aware, but at the same time reduce the notion of context 
to the domain of application, i.e., an unstructured set of entities or entity classes. 

Measuring entity (type) similarity with respect to affordances requires their 
representation. The theory presented in this paper specifies such representation based 
on the conceptual design depicted in [6]. It utilizes an extended affordance theory [7], 
thus incorporating social-institutional constraints and goal definitions. The paper 
provides a context-aware similarity measure based on the hypothesis that entity types 
are the more similar the more common affordances their instances offer a specific 
user for solving a particular task. Hence the presented measurement theory offers a 
computational approach towards understanding how cognitive processes and social-
institutional aspects interact in categorization. This view strongly correlates with the 
three main components of geographic information science, i.e., cognitive, 
computational, and social [8]. The presented framework provides additional insights 
into the grouping of unfamiliar entities to ad-hoc categories [9]. 

 

Starting with a review of related work on affordances and similarity measurement, 
the paper then introduces a formal representation of the extended affordance theory, 
which supports the separation of perceiving affordances from their execution [6]. 
Based on this representation similarity measures are developed that determine the 
similarity between entity types by comparing affordances. For that reason we 
decompose the language describing the affordances and transform it to conceptual 
spaces that support similarity measurement by providing a metric [10]. This leads to a 
representation of functions and actions in conceptual spaces [11]. The approach is 
demonstrated using a scenario from psychology and AI based planning, where an 
agent needs to change a light bulb, involving reasoning about what entities offer 
support for reaching the ceiling. The presented theory focuses on entity types but 
allows for modification to work on the level of individual entities as well. 

2   Related Work 

This section introduces the notion of affordance, its extended theory, and a functional 
representation framework. We then provide an overview of semantic similarity 
theories—focusing on those related to GIScience—and AI planning. 

2.1 Gibson’s theory of affordances 

The term affordance was originally introduced by James J. Gibson who investigated 
how people visually perceive their environment [1]. His theory is based on ecological 
psychology, which advocates that knowing is a direct process: The perceptual system 
extracts invariants embodying the ecologically significant properties of the 
perceiver’s world. Animal and environment form an inseparable pair and this 
complementarity is implied by Gibson’s use of ecological physics. 

Affordances must be described relative to the agent. For example, a chair’s 
affordance “to sit” results from a bundle of attributes, such as “flat and hard surface” 
and “height”, many of which are relative to the size of an individual. Later work with 
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affordances builds on this agent-environment mutuality [12]. According to Zaff [13], 
affordances are measurable aspects of the environment, but only to be measured in 
relation to the individual. It is particularly important to understand the action relevant 
properties of the environment in terms of values intrinsic to the agent. Warren [14] 
demonstrates that the “climbability” affordance of stairs is more effectively specified 
as a ratio of riser height to leg length. 

Several researchers have believed that Gibson’s theory is insufficient to explain 
perception because it neglects processes of cognition. His account deals only with 
individual phenomena, but ignores categories of phenomena [15]. According to Eco 
[16], Gibson’s theory of perception needs to be supplemented by the notion of 
perceptual judgments, i.e., by applying a cognitive type and integrating stimuli with 
previous knowledge. 

Norman [17] investigated affordances of everyday things, such as doors, 
telephones, and radios, and argued that they provide strong clues to their operation. 
He recast affordances as the results from the mental interpretation of things, based on 
people’s past knowledge and experiences, which are applied to the perception of these 
things. Gaver [18] stated that a person’s culture, social setting, experience, and 
intentions also determine her perception of affordances. Affordances, therefore, play a 
key role in an experiential view of space [19, 20], because they offer a user centered 
perspective. Similarly, Rasmussen and Pejtersen [21] pointed out that modeling the 
physical aspects of the environment provides only a part of the picture. The overall 
framework must represent the mental strategies and capabilities of the agents, the 
tasks involved, and the material properties of the environment. 

2.2 Extended theory of affordances 

In this work we use an extended theory of affordances within a functional model, 
which supplements Gibson’s theory of perception with elements of cognition, 
situational aspects, and social constraints. This extended theory suggests that 
affordances belong to three different realms: physical, social-institutional, and mental 
[7]. In a similar and recent effort, the framework of distributed cognition was used to 
describe and explain the concept of affordance [22]. 

Physical affordances require bundles of physical substance properties that match 
the agent’s capabilities and properties—and therefore its interaction possibilities. One 
can only place objects on stable and horizontal surfaces, one can only drink from 
objects that have a brim or orifice of an appropriate size, and can be manipulated, etc. 
Common interaction possibilities are grasping things of a certain size with one’s 
hands or walking on different surfaces. Physical affordances such as the sitability 
affordance of a chair depend on body-scaled ratios, e.g., doorways afford going 
through if the agent fits through the opening. 

It is often not sufficient to derive affordances from physical properties alone 
because people act in environments and contexts with social and institutional rules 
[23]. The utilization of perceived affordances, although physically possible, is 
frequently socially unacceptable or even illegal. The physical properties of an open 
entrance to a subway station afford for a person to move through. In the context of 
public transportation regulations it affords moving through only when the person has 



4      Krzysztof Janowicz1 and Martin Raubal2 

a valid ticket. The physical properties of a highway afford for a person to drive her car 
as fast as possible. In the context of a specific traffic code it affords driving only as 
fast as allowed by the speed limit. Situations such as these include both physical 
constraints and social forces. Furthermore, the whole realm of social interaction 
between people is based on social-institutional affordances: Other people afford 
talking to, asking, and behaving in a certain way. 

Physical and social-institutional affordances are the sources of mental affordances. 
During the performance of a task a person finds herself in different situations, where 
she perceives various physical and social-institutional affordances. For example, a 
public transportation terminal affords for a person to enter different buses and trains. 
It also affords to buy tickets or make a phone call. A path affords remembering and 
selecting, a decision point affords orienting and deciding, etc. In general, such 
situations offer for the person the mental affordance of deciding which of the 
perceived affordances to utilize according to her goal. 

2.3 Functional representation of affordances 

Our conceptual framework of affordances uses an adjusted version of the HIPE 
theory of function, which explains how functional knowledge is represented and 
processed [24]. This theory explains people’s knowledge about function by 
integrating four types of conceptual knowledge: History, Intentional perspective, 
Physical environment, and Event sequences. Functional knowledge emerges during 
mental simulations of events based on these domains. The HIPE theory is well suited 
to the formalization of affordances because of their functional character [6]. Similar to 
functions, affordances are complex relational constructs, which depend on the agent, 
its goal and personal history, and the setting. The HIPE theory allows for representing 
what causes an affordance and therefore supports reasoning about affordances. More 
specifically, it is possible to specify which components are necessary to produce a 
specific affordance for a particular agent. 

Figure 1 demonstrates the conceptual framework of the relation between the three 
affordance categories presented in section 2.2 during the process of an agent 
performing a task. The agent is represented through its physical structure (PS), spatial 
and cognitive capabilities (Cap), and a goal (G). Physical affordances (Paff) for the 
agent result from invariant compounds (Comp)—unique combinations of physical, 
chemical, and geometrical properties, which together form a physical structure—and 
the physical structure of the agent1. This corresponds to Gibson’s original concept of 
affordance: a specific combination of (physical) properties of an environment taken 
with reference to an observer. 

Social-institutional affordances (SIaff) are created through the imposition of social 
and institutional constraints on physical affordances—when physical affordances are 
perceived in a social-institutional context Cont (SI). While performing a task the 
agent perceives various physical and social-institutional affordances within a spatio-
temporal environment represented through Env (S,T). This corresponds to HIPE’s 

                                                           
1 The arrows in Figure 1 represent a function that maps Comp and Agent to Paff. 
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notion of a physical system and allows for localizing the perception of affordances in 
space and time. 

 
 

SIaff 

Paff 

Maff 

Comp (PS) 

Agent (PS) 

Cont (SI) 

Agent (Cap,G) 

Task 

Op (Int) Op (Ext) O (Ext) O (Int) Env (S,T) 

 
Figure 1: Functional representation of affordances for an agent. 

Mental affordances (Maff) arise for the agent when perceiving a set of physical and 
social-institutional affordances in an environment at a specific location and time. 
Affordances offer possibilities for action as well as possibilities for the agent to 
reason about them and decide whether to utilize them or not, i.e., mental affordances. 
The agent needs to perform an internal operation Op (Int) to utilize a mental 
affordance. Internal operations are carried out on the agent’s beliefs (including its 
history and experiences) and lead to an internal outcome O (Int). In order to transfer 
such outcome to the world, the agent has to perform an external operation Op (Ext), 
which then leads to an external outcome O (Ext), i.e., some change of the external 
world. This external change, in turn, leads to new physical affordances, situated in 
social-institutional and spatio-temporal contexts. 

2.4 Semantic similarity measurement 

The notion of similarity originated in psychology and was established to determine 
why and how entities are grouped to categories, and why some categories are 
comparable to each other while others are not [25, 26]. The main challenge with 
respect to semantic similarity measurement is the comparison of meanings. A 
language has to be specified to express the nature of entities and metrics are needed to 
determine how (conceptually) close the compared entities are. While entities can be 
expressed in terms of attributes, the representation of entity types is more complex. 
Depending on the expressivity of the representation, language types are specified as 
sets of features, dimensions in a multidimensional space, or formal restrictions 
specified on sets using various kinds of description logics. Whereas some 
representation languages have an underlying formal semantics (e.g., model theory), 
the grounding of several representation languages remains on the level of an informal 
description. Because similarity is measured between entity types which are 
representations of concepts in human minds, it depends on what is said (in terms of 
computational representation) about entity types. This again is connected to the 
chosen representation language, leading to the fact that most similarity measures 
cannot be compared. Beside the question of representation, context is another major 
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challenge for similarity assessments. In many cases meaningful notions of similarity 
cannot be determined without defining in respect to what similarity is measured [26, 
27]. 

Similarity has been widely applied within GIScience. Based on Tversky’s feature 
model [28], Rodríguez and Egenhofer [4] developed an extended model called 
Matching Distance Similarity Measure (MDSM) that supports a basic context theory, 
automatically determined weights, and asymmetry. Raubal and Schwering [29, 30] 
used conceptual spaces [10] to implement models based on distance measures within 
geometric space. The SIM-DL measure [5] was developed to close the gap between 
geo-ontologies described through various kinds of description logics, and similarity 
measures that had not been able to handle the expressivity of such languages. Various 
similarity theories [31, 32] have been developed to determine the similarity of spatial 
scenes. 

2.5 AI planning 

Planning is the development of a strategy for solving a certain task and therefore a 
precondition for intelligent behavior. In terms of artificial agents, a plan is a chain of 
actions, or action sequence, where each action to be performed depends on some pre-
conditions, i.e., a certain state of the world. Each action potentially causes effects or 
post-conditions that affect or trigger subsequent actions in the chain. The plan 
terminates when the intended goal is reached. A planner in Artificial Intelligence (AI) 
takes therefore three input variables: a representation of the initial state of the world, a 
representation of the intended outcome (goal), and a set of possible actions to be 
performed to reach the goal. Formally, a plan can be regarded as a triple ‚O, I, A ‚p, 
qÚ Ú [33, 34] where O is the intended outcome, I the initial state of the world, and A a 
set of actions—each defined via pre- and post-conditions p, q. However, after 
executing actions the state of the world is changed, which impacts the future plan, 
therefore making planning a non-linear process. One distinguishes between offline 
and online planning. Offline planning separates the creation of the strategy and its 
execution into two distinct phases; this requires a stable and known environment. In 
contrast, online planning is suitable for unknown and dynamic environments where a 
pre-given set of behavioral rules and models cannot be determined. One of the main 
challenges within dynamic environments is that one can neither assume complete 
knowledge of the environment nor the availability of entities (as part of such 
environment) supporting certain actions. 

3   Use Case  

Contrary to classical planning, our vision of an affordance-based and similarity-
driven planning service executes as follows: The agent determines an intended 
outcome (goal). Next, the agent selects a possible affordance descriptor (see section 
4) from its internal knowledge base that either leads to the intended goal or is part of 
the chain towards it. The agent then needs to verify whether an entity of the type 
specified in the affordance descriptor is available within its immediate environment 
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and if not, whether it can be substituted by an entity of a similar type. After that the 
agent can execute the (similar) action specified by the selected affordance. Thus, 
reaching a new state, the agent selects the next outcome to be reached towards the 
final goal and again chooses an appropriate affordance descriptor. The process 
terminates when the final outcome is reached or no supporting entity can be detected 
within the current environment. 

To illustrate this approach, we introduce a use case, which is derived from the 
literature on ad-hoc categories [9, 35]. We assume that an agent needs to change a 
light bulb in an office room. Before doing so, the agent has to fetch an additional 
entity that raises it up to a certain level in order to reach the ceiling and change the 
bulb. In terms of affordances, the task is two-fold: the agent must find an entity that 
affords standing on and has to be movable to be carried or pushed to the required 
position. If a single entity lacks sufficient height, an additional affordance will come 
into play, namely that of being stackable. As illustrated in Figure 2 the office room 
contains several candidate entities, such as a desk, a chair, and books, which could be 
utilized to fulfill the task. Some entities are movable, stackable, and offer support for 
standing on them at the same time, while others fulfill these requirements only 
partially. We assume that the agent has the necessary capabilities to categorize 
entities accordingly. If an entity is of a certain type, it can be manipulated as specified 
in the affordance descriptor (section 4) stored in the agent’s knowledge base. 

 

 

Figure 2: Candidate entities needed to change a light bulb. 

Figure 3 shows a simplified representation of the ‘changing a light bulb’ scenario 
using the framework discussed in section 2.3. The agent perceives affordances 
involving the entities desk, chair, and book in the office environment, where the agent 
is spatio-temporally located. The task is changing the light bulb, which involves a 
series of sub goals. The physical structure of the desk affords the agent to move it, 
stand on it, stack it, and to climb it. The Paff of moving the desk is constrained 
through the following social context (or rule): Moving the desk will lead to scratches 
on the floor, therefore, one should not slide the desk across the floor, resulting in the 
SIaff(not move). 

The chair affords the agent to move, stack, climb, and sit on it. Books in the office 
afford the agent to move and stack them. Notice that all of this knowledge, which had 
previously been acquired by the agent, is represented for the entity types desk, chair, 
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and book. Perceived instances in the agent’s environment are categorized with respect 
to these types and therefore the agent can utilize knowledge associated with them. 
This process is similar to a perceptual cycle [36] where a schema directs exploration 
and sampled objects modify the schema. 

 
 

SIaff(not move) 

Paff(move) 
Paff(stand) 
Paff(climb) 
Paff(stack) 

Maff 

Desk (PS) 

Agent (PS) 

Cont (SI) 

Agent (Cap,G) 

Change light bulb 

Office (X,10am) 

Chair (PS) 

Paff(move) 
Paff(sit) 

Paff(climb) 
Paff(stack) 

Book (PS) 
Paff(move) 
Paff(stack) 

 

Figure 3: Functional affordance-based representation of use case. 

All of these functions result in the top-level Maff for the agent, namely to evaluate 
whether the task of changing the light bulb can be fulfilled with the given constraints 
represented through the functions. More formally, the (interconnected) sets of 
physical and social-institutional affordances at a given point in space and time result 
in a set of mental affordances for the agent: {Paff, SIaff} Env(S,T) => {Maff}. Maffs are 
therefore higher-order functions because Paffs and SIaffs are functions themselves. 

 

 
Maff 

Planning 
Utilize {Paff}? 

Move chair, 
climb chair 

Stand on 
chair 

Outcome 
Utilize {Paff}!  

Figure 4: Functional activity process for the agent. 

The second part of the process is represented in Figure 4. The agent performs 
internal operations (within the planning process), deciding whether the task can be 
performed based on the given functions. This is also where the agent performs 
affordance-based similarity measurement to find out which entities can be used for 
the task of changing the light bulb. The outcome of this operation is the decision to 
utilize a set of affordances. Moving and climbing the chair are external operations, 
which subsequently lead to the external outcome that the agent stands on the chair and 
can change the light bulb. This is an abstraction from more complex online planning 
tasks, as we assume that the same entity can be used for each step (moving, climbing, 
and standing). 
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4   Representation of Affordances 

This section introduces a representation of affordances built upon the extended theory 
described in section 2.2, and provides the groundwork for the similarity 
measurements established in section 5. 

Based on previous definitions [37, 38], we specify an affordance A as a triple ‚O, 
E, {AC}Ú. The outcome O is the change of world state after execution of the actions 
AC with respect to manipulated entities of type E. The same affordance can be 
realized by several actions—each described by physical PH and social-institutional SI 
constraints, i.e., pre-conditions. AC is therefore defined as a set of actions 
{ac1(ph1,si1),..., acn(phn,sin)}. Constraints are tied to a certain action with respect to an 
entity (of a given type), while the outcome is equal for all actions defined for the 
affordance A. Therefore the outcome can also be regarded as the post-condition of all 
actions of A. For the representation of outcome, physical, and social-institutional 
constraints we employ unary and binary predicates, and apply a restricted kind of 
predicate logic. The predicates (predicate variables) are part of the agent’s internal 
knowledge base, i.e., no semantic problems arise from the question of what a 
predicate, such as hasPosition, means to the agent. This knowledge base also contains 
information about the inter-relation between predicates, such as hierarchies or (spatial 
and temporal) neighborhood models. The predicate logic used to specify actions and 
outcome can be regarded as a subset of first order logic. Valid operators and 
quantifiers are:  
• Operators (constructors): logical not (Ÿ), and (,), and implication (→) 
• Quantifiers: ", $, and $! ( exactly one) 
• Arithmetic operators: <, >, ≤, ≥, ≠ and = applied to �+ 
In addition, we use some abbreviations to improve readability. This way, some 
necessary assumptions are made about the later transformation to conceptual spaces 
without the need of going into detail about the relation between logics and conceptual 
spaces (see also [39]), and the problem of mapping.  
• ("e$!r P(e,r) , E(e) , R(r) , R(x) , (r ≤ x)) , …→ Q(e) is abbreviated by Q: 

P(e, ≤x) , …; where P,Q are predicates, e is an instance of E, and r, x are real 
numbers. This allows for statements such as the one shown for carry(ability) 
below. 

• The same way "e$!f P(e,f) , E(e) , F(f) is abbreviated by P(e,F(f)); where f is 
an instance of F such as in hasPosition(e,Position(p)). This states that an entity 
needs to have a position from where it is moved to another one. The same kind of 
statement can be made by adding negation, such as on(e, ŸParquet(p)). 

The perception and execution of affordances is modeled in terms of mapping 
statements, i.e., predicates connected via logical and, to Boolean values. Physical 
constraints describe statements about the physical properties of entities that need to be 
true before the specified action can be performed with respect to entities of the type 
E. Social-institutional constraints specify statements about social aspects regarding 
the interaction with entities (again abstracted to type level) that need to be true before 
the specified action can be performed. Both types of constraints are specific with 
respect to the agent perceiving the affordance. We claim that entity types E are 
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specified only via what their instances afford a given agent and are the more similar 
the more common or similar affordances they support. 

Summarizing, a certain type of entities affords something to a specific agent if the 
agent can perform actions on such entities; i.e., A is true with respect to the agent if at 
least one of the actions of AC is performable (its PH and SI constraints are satisfied, 
i.e., true) and after realizing the affordance A the state of the world changes as 
specified in O (i.e., if the predicates specified for the outcome are true). 
Consequently, although an agent can perceive the affordance of something to be 
moveable, it could fail to move the entity because of external factors not explicitly 
stated in the action constraints. This reflects both the separation of internal operation 
and outcome, and external operation and outcome described in section 2.3. Note that 
because we assume the agent to be fixed it is not part of the affordance definition 
itself but its physical and social-institutional context is defined via constraints on the 
actions. 

In terms of the light bulb scenario, an affordance descriptor for moveability of 
desks is specified as follows: 

 

 Move-ability ( 
 Outcome (O): hasPosition(e, Position(y)) , y ≠ x 
 Entity Type (E): Desk 
 Actions (AC):  

  carry(PH:hasPosition(e, Position(x)) , WeightKg(e,  ≤20) , LengthCm(e,  ≤100) , …) 

  push(PH:hasPosition(e, Position(x))) , WeightKg(e,  ≤100) , … 
 SI: on(e, ŸParquet(p))   

 …) 
 

For our agent desks afford moving if they can be either pushed or carried from a 
position x to another position (specified as a position not being the start location x). 
Due to the agent’s physical capabilities it is able to carry desks with a weight below 
21kg and a length of up to 100cm. Pushing the desk is an alternative action and could 
be even performed with heavier desks (up to 100kg). Pushing though may damage 
floors. Therefore an entity of type desk is moveable if it either weighs less than 21kg 
and is not longer than 100cm, or weighs less than 100kg but the supporting floor is 
resistant to damage caused by sliding heavy entities across it (parquet is not). In this 
example the restrictions are mostly based on the physical capabilities of the agent and 
the structure of solid entities. In other ad-hoc categories such as ‘things to extinguish 
a fire’ the candidate entities (e.g., water, sand, or a blanket) also differ in their 
consistency. It is still possible that the agent perceives the affordance and tries to 
carry the desk but during execution recognizes that for external reasons the desk 
cannot be moved (e.g., because the desk is mounted to the floor). Depending on these 
restrictions and the abilities of the agent some desks may not be movable at all. The 
question whether such entities should still be categorized as desks is not discussed 
here but will be taken up again in the future work section. 

This example also points to the connection between affordances. Depending on the 
granularity, one may argue that there are explicit pushability and carryability 
affordances that can be defined as sub-affordances of moveability. In addition, the 
social-institutional restriction introduced for pushing desks could also be perceived as 
an affordance (damageability). Damageability of floors is then defined via an 
outcome O specifying that the state (in this case, the surface) of the floors is changed 
by several actions AC. 
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5   Affordance-based Similarity Measurement 

This section describes how similarity between entity types can be measured based on 
the assumption that types of entities are the more similar, the more common 
functionalities their instances afford to a given agent. We therefore introduce a 
framework that specifies what parts of the affordances are compared and how. After 
defining what makes affordances similar, we use the similarity values determined 
between affordances to develop a similarity measure for entity types. As we cannot 
directly handle the expressivity of the affordance representation with respect to 
similarity measurement, the affordance descriptors need to be transformed to regions 
within conceptual spaces. Similarity between these regions can be computed using 
existing measures. Overall similarity is then described as the weighted sum of the 
individual similarity values measured between affordance descriptors. This step is 
comparable to a weighted (w) Tversky Ratio Measure such as used in MDSM. At last 
the same kind of measure is applied to determine entity type similarity. 

5.1 Similarity between Affordances 

Each affordance is specified by the change in world state its execution causes and the 
actions performed on certain types of entities to achieve this outcome. As the entity 
types are only described in terms of what they afford, similarity between affordances 
depends on the action and outcome specification. To evaluate whether an affordance 
defined for a certain entity type is valid in the context of a specific agent and entity, 
predicates are resolved to Boolean values. Similarity though rests on the assumption 
that affordances are the more similar the more similar their descriptors are. As no 
metric can be defined to reason about the similarity of predicates in general, we define 
mappings for the predicates to quality dimensions within a conceptual space [10], 
hence being able to utilize a metric for comparison. Similarity measures are 
asymmetric, therefore the direction of the comparison must be taken into account. In 
the following, the index s is used for source while t determines the target, i.e., the 
compared-to predicate. 

First we consider predicates that map entities to non-negative real numbers (�
+). 

Such predicates can either describe facts about entities of the type specified in the 
affordance or external entity types. The predicates are transformed to dimensions and 
the numeric values to upper or lower bounds of the dimensions. If a predicate maps to 
a single value, lower and upper bounds are equal. If no lower bound is specified it is 
set to 0 or in the case of upper bound to infinity. Dimensions referring to the entity 
type E together form a conceptual space while dimensions referring to other entity 
types form conceptual spaces for those types2. This is also the reason why the action 
and outcome descriptors cannot be directly utilized to determine the similarity 
between entity types. Physical and social-institutional constraints as well as outcomes 
may directly refer to the specified entity type or to its environment, e.g., via external 
types. 

                                                           
2 In such cases similarity is determined in a recursive way as entity types are again explained in 

terms of affordances. 
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In cases where predicates map between entities the transformation to dimensions is 
more complex. The predicates can still be represented as dimensions but only on a 
Boolean (i.e., nominal) scale3. This means that predicates ps and qt are equal 
(similarity is 1) if ps = qt, which also includes rewriting rules (such as De Morgan 
rules for , and . as well as for $ and ") or if qt can be inferred from ps. These 
inference mechanisms include standard inference rules, such as elimination and 
introduction but also spatio-temporal reasoning, etc. A typical example can be 
constructed assuming that ps: PO(X, Y) and qt: ŸDC(X, Y) in terms of the Region 
Connection Calculus [40]. Note that the same example (and other inference rules) 
does not work in the opposite way, which is consistent with keeping similarity 
measurement asymmetric. In other cases similarity is 0. 

The connection between single predicates using , is preserved within the structure 
of conceptual spaces by the amalgamation (+) of similarity values (Equation 2). The 
pre-processing step of turning predicate-based descriptions to conceptual spaces is 
applied to any physical and social-institutional constraints of all action descriptors ac 
œ AC and the outcome descriptors O of source and target affordance As and At. This 
creates at least one conceptual space for each action and outcome of As and At. The 
process is computationally expensive, but it is static and therefore easy to cache 
offline. The process is depicted in Figure 5. 

 
 

 

Figure 5: Creating and mapping dimensions from predicates. 

After transformation to conceptual spaces an alignment procedure [5, 41] must be 
established to determine which conceptual spaces of the descriptors of As and At are 
mapped for similarity measurement. Each conceptual space describes either the 
capabilities (in terms of physical or social-institutional constraints) of the agent to 
perform an action with respect to an entity type or the desired outcome for all actions 
specified for the affordance. From this the following alignment rules can be derived. 

                                                           
3 While this approach is used in most of the literature on similarity measures within conceptual 

spaces, one may argue that such mapping violates the notion of dimensions and regions. 
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• Spaces representing the outcome aspects of As are mapped to such from At. 
• Spaces representing physical aspects or social-institutional aspects of an action 

from As are mapped to such from At. 
• Space specifying dimensions for different types of entities cannot be mapped. 
• Physical and social-institutional aspects of an action from As are jointly mapped 

to their counterparts of an action from At and not separately to different actions. 
• Action names are unique within the agent’s knowledge base, therefore action 

descriptors of As and At are mapped if both share the same name, or if both are 
situated within the same hierarchy or neighborhood model. In the latter case, the 
maximal possible similarity is decreased to the similarity within the hierarchy or 
neighborhood [5, 42]. 

• If no counterpart for a conceptual space representing constraints of an action can 
be found, the similarity value is 0. 

Finally, after constructing conceptual spaces for the affordance descriptors, 
semantic similarity between conceptual regions can be measured. Semantic distances 
are calculated based on the standardized differences of the values for each quality 
dimension. The final values are normalized by the number of dimensions used in the 
calculation. This way, a semantic distance function between two conceptual regions 
can be established [43]. Here, quality dimensions are represented on either Boolean or 
interval scale. For Boolean dimensions, the values can take 1 or 0, therefore semantic 
similarity between two conceptual regions for each Boolean dimension is either 1 
(completely similar) or 0 (completely dissimilar). In order to calculate asymmetric 
similarity for two intervals we consider a simplified version of the line alongness 
ratio for topological line-line relations [44]. Positive similarity values of intervals 
result only if there exists at least a partial overlap between intervals. If such overlap 
does not exist, the similarity evaluates to 0, i.e., complete dissimilarity. This makes 
sense for the described scenario, because minimum and maximum values for 
dimensions are hard constraints for the agent. The calculation of interval similarity is 
given in Equation 1. 

SimInt(I i,Ij) = length(Ii∩I j)/length(Ii) with i,j œ {1,2}, i≠j   (1) 

The final measure for semantic similarity between two conceptual regions X and Y is 
depicted in Equation 2, where Scale refers to either Boolean or interval, Si and Sj are 
the respective values of a quality dimension to be compared, and n refers to the 
number of dimensions. 

SimCS(X,Y) = Σ(SimScale(Si,Sj)) / n  (2) 

After being able to determine the similarity within conceptual spaces, the similarity 
between affordances is defined as depicted in Equation 3. 

SimA(As,At) = wac* 
1/nS simAC + wo*simO; where  Sw =1 (3) 

SimA is specified as the weighted (w) and normalized sum of similarities for 
compared actions (simAC) and outcomes (simO) expressed as similarity within 
conceptual spaces. While simO is directly determined from the outcome conceptual 
space of As and At, the similarity between actions is determined via the weighted sum 
of the similarities for the physical and social-institutional aspects (Equation 4). The 



14      Krzysztof Janowicz1 and Martin Raubal2 

number of compared actions n in Equation 3 represents alignable actions, not the total 
number of all available actions.  

SimAC = wph* simph + wsi*simsi; where  Sw =1 (4) 

Summarizing, as depicted in Figure 6, affordances can be compared by mapping 
their descriptors to conceptual spaces and expressing predicates as dimensions of such 
spaces. The overall similarity is then defined as the weighted sum for the individual 
similarities computed for actions and outcomes, where the former depend on the 
similarity values computed for their physical and social-institutional constraints 
(regarding a certain type of entity and agent). 

 

 

Figure 6: Comparing affordances via their descriptors. 

5.2 Similarity between Entity Types 

Based on our core assumption that entity types are the more similar the more common 
functionalities their instances afford an agent (in solving a given task), similarity 
between types can be determined as depicted in Equation 5. 

SimE(Es,Et) = 1/n * S SimA (5) 

Again, this raises the question which affordances should be compared. The theory 
presented in this paper is driven by the idea of solving tasks via the agent’s interaction 
with its environment and hence focus on achieving goals. Therefore, affordances are 
selected for comparison with respect to their outcome, i.e., the affordances As and At 
with the highest outcome similarity (simO) are matched.  

5.3 Weights 

Weighting is a useful method to adjust the similarity measurement process to better fit 
a given task. However, skeptical readers may argue that weights can be used to 
manually tweak the numbers until they fit the expected results. This section briefly 
discusses the role of weights in the presented framework to counteract such 
argumentation. The weights introduced in section 5.1 are comparable to the 
commonality and variability weights introduced as part of the context theory of 
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MDSM [4] and can therefore be automatically determined without the need of manual 
adjustment. While MDSM distinguishes between attributes, functions, and parts to 
describe and weight entity types, our approach can be weighted with respect to 
physical and social-institutional constraints as well as outcomes. By using such 
weights the importance of these aspects can be automatically adjusted to improve the 
quality of the similarity estimations. Commonality increases the similarity of such 
kinds of descriptors that are common for most compared entity types and tends to 
increase overall similarity. In contrast, variability strengthens the weight of such 
aspects that are unique for certain types of entities and tends to decrease overall 
similarity. In terms of the light bulb use case, social-institutional aspects may become 
more relevant for the measured similarity if the physical constraints of the entities are 
more or less the same (or vice versa).  

The proposed weights can be used to define aspects as irrelevant for a certain task 
(by setting the weight to 0). If a task is of fundamental importance—as can be 
imagined for the wheelchair example described in [6]—it may be reasonable to ignore 
social-institutional constraints and focus on the outcome aspects. In other words, the 
proposed weights can be either automatically determined or used as exclusion factors 
depending on the task. In both cases the weights do not require manual pre-settings. 

6   Application to Use Case 

This section applies the presented framework to the light bulb use case. After 
perceiving the available entities in its environment the agent recognizes that it is not 
allowed to slide the desk towards the light bulb (modeled as social-institutional 
constraint). The agent's physical capabilities prevent it from carrying the desk, 
therefore other entities must be used to perform the task. From previous interaction 
with its environment the agent knows several facts about certain types of entities. This 
information is stored as affordance descriptors in the agent's knowledge base. To find 
out whether other entities (Et) can be utilized, the agent compares the affordance 
descriptors (relevant for performing the task) of desks (Es) with those of books and 
chairs (figure 3).  

As argued in section 4 we assume that the physical constraints on carry und push 
depend on the abilities of the agent and the structure of the moved entities, leaving 
other aspects, such as texture, shape, and minimal size (which affect graspability) 
aside. The following specification for moveability of books does not state that the 
agent is physically unable to carry heavier books, but represents its current knowledge 
about the interaction with books4. 

 

Move-ability ( 
 Outcome (O): hasPosition(e, Position(y)) , y ≠ x 
 Entity Type (E): Book 
 Actions (AC):  

  carry(PH:hasPosition(e, Position(x)) , WeightKg(e,  ≤ 3) , LengthCm(e,  ≤ 30) , …) 

  push(PH:hasPosition(e, Position(x))) , WeightKg(e,  ≤ 3) , … 
 …) 

                                                           
4 Instead of assuming the previously acquired knowledge as an upper bound, one may also 

argue for positive infinity as an upper bound. 
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Contrary to desks, social-institutional constraints are not defined for moving books. 
The comparison between moveability of desks and books yields a similarity of 0.68. 
In the case of chairs, where maximal weight and length were set to 10kg respectively 
60cm, the resulting similarity is 0.86. This reflects the fact that, with respect to weight 
and length, the experience of moving desks and chairs is more similar than between 
desks and books.  

The same comparison is also computed for standability, stackability, and 
climbability, and finally leads to a similarity of 0.36 between desks and books and 
0.64 between desks and chairs. Due to the situated nature of similarity and 
categorization the results cannot be used to argue that chairs or books are similar to 
desks in general [27]. However, to fulfill the given task, i.e., to change the light bulb 
the agent can conclude from previously acquired knowledge that chairs are possible 
candidates (internal operation). While trying to utilize the individual chair (external 
operation) the agent may fail because—contrary to other chairs—the available chair 
might not have sufficient stability, and could then utilize the books. If the chair is 
suitable to solve the task, the agent adds a new affordance (restricted by the physical 
properties of the used chair) about chairs to its knowledge base. In case of the books, 
standability and climbability are added. This relates to the fact that humans cannot 
perceive all information about the physical properties of a certain entity and therefore 
reason on a category level (based on previous knowledge). This post-processing of 
entity types can be regarded as a learning process.  

7   Conclusions and Future Work  

The presented methodology provides a framework for the conceptual affordance 
representation discussed in [6] and specifies how to measure similarity between 
affordances and entity types. The formalization captures important aspects of the 
conceptual design, such as the distinction between physical and social-institutional 
constraints. Via the outcome specification our approach is able to distinguish between 
the perception of an affordance and its execution. Similarity measurement is not a 
static procedure but modeled as a situated process [26, 35] within a context formed by 
the actor, task, and environment. On the one hand this provides insight into similarity-
based categorization of unfamiliar entities (entity types) such as for ad-hoc categories 
[9]. On the other hand it allows for similarity-based reasoning and planning. 

Further work should focus on providing a detailed formal system underlying the 
presented affordance theory. The important question is not directed to whether a more 
expressive language can improve the computational representation of affordances but 
whether such representation still allows for similarity measurement. In this paper 
simple predicates were transformed to regions in conceptual spaces to determine their 
similarity. One obvious problem thereby is that all dimensions are regarded as 
independent from each other, which is normally not the case. For instance, restrictions 
such as weight and length defined for the actions of the moveability affordance 
influence each other. In addition, only such predicates were allowed that could be 
mapped to the conceptual space representation. To overcome these restrictions and 
allow for more complex logical statements within the affordance definition, one could 
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consider the integration of approaches such as the conceptual spaces logic [39] or 
similarity measurements a la SIM-DL. Analogy may be an additional tool to compare 
logical statements that, due to the nature of predicate logic, cannot be compared in 
terms of similarity. The presented theory would also benefit from the integration of 
measures focusing on similarity between spatial scenes [31, 32] and case-based 
reasoning [45]. While we have introduced AI planning to argue for the representation 
of affordance as a triple ‚O, E, {AC}Ú, further work is required to adopt the presented 
methodology to real planning and learning scenarios. This will involve the interaction 
with several types of entities to solve a certain task, instead of trying to find one entity 
(of a given type) that can be used to fulfill all subtasks. Such an extended approach 
can then be tested with real geographic data sets. 

Additional research should investigate the relationship between affordances and 
how affordances can be combined. While our work focuses on entity types the model 
can be adapted to entities as well. This raises the question whether an entity is still of 
some sort independent of whether it offers certain affordances (e.g., a broken cup). 
Considering temporal aspects, one may argue that an occupied chair (therefore not 
supporting sitability) should not be categorized as chair anymore. The agent should 
not reason about entities in terms of categories, such as desks, books, and chairs, but 
as members of sets determined by affordances. Each ‘light bulb changing support’-
entity is then defined as a member of the ad-hoc formed set ‘moveable and standable 
and climbable (and stackable)’. The task of similarity is therefore to distinguish 
between central and radial entities. 
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