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Abstract. The Digital Earth [13] aims at developing a digital representation of the planet. It is motivated by the
need for integrating and interlinking vast geo-referenced, multi-thematic, and multi-perspective knowledge archives
that cut through domain boundaries. Complex scientific questions cannot be answered from within one domain
alone but span over multiple scientific disciplines. For instance, studying disease dynamics for prediction and policy
making requires data and models from a diverse body of science ranging from medical science and epidemiology
over geography and economics to mining the social Web. The näıve assumption that such problems can simply be
addressed by more data with a higher spatial, temporal, and thematic resolution fails as long as this more on data is
not supported by more knowledge on how to combine and interpret the data. This makes semantic interoperability
a core research topic of data-intensive science. While the Digital Earth vision includes processing services, it is, at
its very core, a data archive and infrastructure. We propose to redefine the Digital Earth as a knowledge engine
and discuss what the Semantic Web has to offer in this context and to Big Data in general.

’Considerable data regarding the environment are

available through the myriad of remote-sensing

programs, however, this data is not directly com-

patible with the models. It has been observed that

scientists and engineers spend more than 60% of

their time just preparing the data for model input

or data-model intercomparison. This is an ineffi-

cient use of the precious time of NASA scientists

and engineers.’ [28]

Beyond the General-Purpose Web

Initially, the Semantic Web [3,17] was proposed as
a successor of the document Web that makes the
stored content understandable to software agents
and enables them to extract, process, and com-
bine this information. At this time, the Web was
still dominated by authoritative sources and differ-
ent from the social read-write Web that we know
today. During these early days, data on the Web
was assumed to be relatively stable, authorita-

tive, and fit for a given, predefined purpose. Thus,
in analogy to catalogs, it was assumed that data
providers would invest in creating intelligent meta-
data to improve retrieval and reuse. This made se-
mantic technologies capable of handling sophisti-
cated ontologies a promising research vision.

These days, however, the Web is based on funda-
mentally different principles. The volume of data
is growing at a higher rate than our capacities for
long-term archiving. New data is added at a veloc-
ity, surpassing our ability to consume it. Instead
of a limited number of data providers and formats,
data is contributed by a myriad of human users,
software agents, and technical sensors in a vari-
ety of different multi-media formats. While these
three V ’s are characteristic for the omnipresent
Big Data, we argue that a fourth V addressing
the value of the created data is relevant as well.
Finally, the general-purpose Web in itself is los-
ing ground with traffic constantly declining since
more than 10 years and the increasing success of
single-purpose apps [1].
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These new realities call for a new perspective
on the vision of a semantic Web. Central assump-
tions such as that data providers would invest into
creating sophisticated and stable ontologies do not
hold any longer. To the contrary, the Web calls
for pattern-like, application-driven schema knowl-
edge that can be easily adopted and makes data
reusable for use cases not envisioned by the data
provider beforehand. In fact, Linked Data [4] can
be understood as such a novel view on Web seman-
tics. It takes up the successful idea of Web links
and enriches them with names and types, proposes
a decentralized and open network of inter-linked
data providers, makes data uniquely referenceable
using URIs, and argues for lightweight ontolo-
gies. Schema.org, a schema collection for embed-
ded semantic markup for Web pages, launched by
Google, Yahoo, and Microsoft in 2011 points into
a similar direction. Even more, Google’s Knowl-
edge Graph implements such a lightweight version
of a semantics-based search on Web scale.

Is there no need for more powerful knowledge
representation and reasoning? There is, but we
have to realize that different settings require differ-
ent methods. We have to look beyond the general-
purpose Web to communities that have an intrin-
sic need for more intelligent metadata and concep-
tual modeling. In terms of the Big Data V ’s, vol-
ume and velocity in themselves do not motivate
the need for more elaborate semantic technologies,
but may, indeed, be best served with lightweight
approaches. It is the variety and value dimension
of data that motivates the investment into tech-
nologies for modeling and reasoning over complex
knowledge. In the following we argue that interdis-
ciplinary science offers just this setting, in which
heterogeneous data is painstakingly created, col-
lected, maintained, and integrated to answer com-
plex scientific and social questions, and to support
policy making.

The Digital Earth

Introduced by Al Gore in 1998 [13] and re-
fined over the years, the Digital Earth envi-
sions a highly interdisciplinary knowledge archive
and service infrastructure for geo-referenced, in-
terconnected, multi-dimensional, multi-thematic,
and multi-perspective data [8]. The 2011 sympo-
sium of the International Society for Digital Earth,

for example, was themed The Knowledge Gener-
ation and investigated the role of Digital Earth
technologies for economic and social sustainable
development, disaster mitigation, environmental
protection, conservation of natural resources, as
well as the improvement of living standards.1 The
Digital Earth is motivated by the insight that
complex scientific questions cannot be answered
from within one domain alone but span over mul-
tiple scientific disciplines ranging from the natural
and earth sciences to the social sciences, informa-
tion science, and engineering. Essentially, the Dig-
ital Earth is about the exchange, integration, and
reuse of heterogeneous data. This makes seman-
tic interoperability a major research topic. Over
the years some of the initial Digital Earth goals
have been realized by virtual globes such as NASA
World Wind or Google Earth. However, these so-
lutions are mostly focused towards visualization
and simple retrieval tasks.

Instead of establishing interoperability by sac-
rificing semantic heterogeneity, the Digital Earth
calls for methods to reason in the presence of het-
erogeneous and contradicting conceptual models,
while maintaining the variety brought in by differ-
ent scientific domains. A key problem in exchang-
ing scientific data and using such data for policy
making is that the meaning of categories used to
share knowledge is not made explicit. Hence, the
same terms have radically different meanings. This
is especially troublesome for terms that seem to be
part of common everyday language. Consequently,
they are often not defined when publishing scien-
tific data. Typical examples include city, forest, or
boundary [23]. Moreover, the theories and meth-
ods used to produce these categories are most of-
ten not shared together with the data which limits
our ability to reproduce scientific results[7].

In the past, description logics-based knowledge
representation languages have often been mistaken
as a replacement to numerical and statistical mod-
eling. Instead, ontologies are best understood as a
thin communication and exchange layer. Thin, in
this context, should not be confused with unim-
portant; in fact, ontologies are the decisive glue be-
tween models, data, and users. Ontologies should
assist in answering questions such as whether a
specific model can be meaningfully applied to a

1http://www.isde7.net/
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particular dataset and whether this dataset is com-
patible with the user’s conceptualization of the do-
main at hand. For instance, ontologies and reason-
ing systems could assist users in selecting study
areas and datasets to test their scientific hypothe-
ses.

We argue that in the light of IBM’s DeepQA
architecture [10] and recent progress on Seman-
tic Web, Linked Data [4], and geospatial seman-
tics [25], the Digital Earth should be envisioned
as a distributed knowledge engine and question
answering system that supports scientists beyond
mere data retrieval. While the need for ontologies
and semantic technologies is widely acknowledged,
crucial components to realize such a vision are
missing: how to assist scholars in defining micro-
ontologies that support the conceptualization of
their local models, how to arrive at the primi-
tives, i.e., base symbols, for such ontologies, how
to ground primitives in real observations and align
them to knowledge patterns, how to track cate-
gorical data back to measurements using prove-
nance, how to make ontologies first class citizens
of statistic methods, and, finally, how to reason
over heterogeneous, incomplete, and contradicting
micro-ontologies to foster interoperability and for
checking integrity constrains before reusing data
[23]? In other terms, how do we enable domain
scientists to become knowledge engineers and at
the same time keep the underlying Semantic Web
machinery transparent?

Sources of Variety

The variety of Big Data in general and the Digital
Earth in specific stems from different sources.

First, and most obviously, different scientific dis-
ciplines use the same terms while the underlying
meaning often differs to a degree where they be-
come incompatible. A good example is the use of
the term scale in geography versus most other sci-
ences. Intuitively, a large scale study in, say, ecol-
ogy or economy, covers a large extent in surveyed
space; where the notion of a space is not restricted
to its spatial meaning but includes attribute spaces
as well. Modeling the global economic impact of
the 2009 flu pandemic based on public heath data,
for instance, would be called a large scale study.

In contrast, geography is following the tradi-
tional cartographic definition of scale. Here, scale

is the representative fraction between the distance
on a map and the corresponding distance on the
ground. For example, while each unit on a 1/24 000
map represents 24 000 units, e.g., centimeter, on
the ground, each unit on a 1/500 000 map corre-
sponds to 500 000 units on the ground. As the first
fraction is greater than the second, a 1/24 000 map
is a large scale map covering a small extent of the
Earth’s surface in detail. To the contrary, a small
scale covers large areas, such as continents, at the
cost of representing less details.

While the example just given is multi-thematic,
streets are often used to illustrate multiple per-
spectives on geographic space and categorization.
A street is a connection from A to B from the view
point of transportation science, while it is a disrup-
tive separation that cuts a habitat into segments
from the view point of ecology and conservation.

Differences in the meaning of the used terms are
even more troublesome when they happen within
scientific communities as a common agreement is
often wrongly assumed. Meaning is not static but
dynamically reconstructed during language use.
While humans can perform this reconstruction by
situated simulation [2,15], terms used in metadata
records are static and de-contextualized. Conse-
quently, the challenge is to understand what was
meant with a keyword used to annotate data many
years ago [30]. As Scheider puts it the problem is
not that machines are unable to communicate, but
that humans misunderstand each other if commu-
nicating via machines [29]. Finally, meaning does
not only vary across and within scientific commu-
nities, but also as a function of language, space,
culture, age, social structure, and many other fac-
tors.

A second and related source for variety lies in
the very nature of knowledge itself. While some
scientists favor a Platonic realism and argue for
an independent ontological existence of universals,
this position is difficult to defend in case of highly
multidisciplinary research that cuts through the
boundaries of social and natural sciences. Ac-
knowledging that the classes we define in our on-
tologies are constructed and that knowledge is an
evolving process of adaptation to our experiential
reality [31] implies that there is (and will be) more
than just one way to construct. Consequently, Big
Data should not be approached with equally big
theories that try to arrive at a universal and static
agreement, but by a network of theories that fos-
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ter interoperability without giving up on semantic
heterogeneity (and, thus, the long-tail of science).

A third reason for variety in Big Data is
what could be called an observation versus def-
inition mismatch. For example, a transportation
infrastructure ontology may model watercourses
in terms of water depth, currents, and hazard to
navigation, while another source may model wa-
tercourses by their Strahler number, i.e., by their
branching complexity. While both models are use-
ful and may be applied to describe the same en-
tities on the surface of the Earth, the observa-
tion data of the first one cannot be transformed to
match the second definition and vice versa. While
this is related to the multi-purpose argument made
before, it adds the additional problem that the def-
inition of terms cannot be reconstructed out of the
available observation data.

Finally, another source of variety stems from
the way how data and conceptual models are pro-
duced. This ranges from different scientific work-
flows and measurement procedures to different
cultures and file formats. To give a concrete ex-
ample, authoritative providers such as the U.S.
Geological Survey (USGS) aim at a high degree
of standardization, a stable schema level, main-
tainable data products, and well defined mea-
sures for data quality. In contrast, so-called Vol-
unteered Geographic Information [11] such as
known from OpenStreetMap, Ushahidi, and geo-
referenced Flickr images and tweets, are created
and maintained by a highly-heterogeneous user
community with different backgrounds and appli-
cation areas in mind. This kind of citizen science,
which is also very popular in other scientific do-
mains, relaxes the typical rules under which data is
collected for the benefit of providing the most up-
to-date data. From the viewpoint of Digital Earth
research this source of variety opens up new possi-
bilities for science and especially for the evaluation
of data. For instance, Flickr images can be used to
validate tweets about the Arab Spring, and volun-
teered crisis mapping can show a complementary
picture of the 2011 Earthquake in Japan.

Research Challenges

In the previous sections, we argued that a dis-
tributed knowledge engine that cuts through sci-
entific domains may be a promising vision for the

next decade of semantics research. We explained
why the variety and value dimensions of Big Data
will benefit most from semantics research which
enables a more efficient publishing, retrieval, reuse,
and integration of scientific data, models, and
methods. In the following, we highlight selected re-
search challenges that would have to be addressed
to realize the vision of the Digital Earth as a
knowledge engine.

Fields and Objects

Data can typically be represented as fields or
as objects [12]. For example, terrain can be mod-
eled as a continuous surface of elevation values or
by discrete objects, e.g., hills and mountains. In
scientific workflows, sensor data is often collected
as fields and transformed into objects later (if at
all) during analysis or information visualization. A
typical example is the classification of continuous
absorption and reflection patterns of electromag-
netic radiation collected by remote sensing instru-
ments into discrete land cover classes. The classed
data is often shared as objects, e.g., polygons rep-
resenting forests. Semantic Web technologies and
the methods by which we define ontologies have
mostly focused on the object view and neglect field
data. This does not only exclude a huge amount of
relevant datasets but also fails to prevent semantic
interoperability problems at an early stage.

The Linked Data postulate of assigning URIs to
identify entities is a good example showing how
much current work is focused on objects. It is not
clear how to assign URIs to field data. For in-
stance, remote sensing instruments collect data in
a range defined by their swath width and cut down
the data into manageable chunks. The resulting
data scenes often span thousands of square miles
and consist of millions of pixels holding the mea-
sured values. Assigning URIs to each of these pix-
els is meaningless. The same is true for assigning
a single URI to each scene as they are artifacts of
data collection and often dissect relevant features,
e.g., rivers.

The observations just made prompt the ques-
tion, how field-based data can become a first class
citizen of Linked Data and the Semantic Web, in
order to transcend the current object-centric per-
spectives.
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Accuracy of Categorization

Understanding data quality is crucial for the in-
tegration and analysis of heterogeneous data; posi-
tional accuracy, attribute accuracy, logical consis-
tency, and completeness come to mind. In terms of
geo-referenced data, for example, positional error
distribution is measured by comparing digitized
locations to those on the ground, i.e., by ground
truthing to higher-precision measures or conven-
tion. Similarly, logical consistency is determined
by (topological) rules; e.g., roads and buildings
must not overlap. However, we lack methods to
describe the semantic accuracy of categorical data
in the same way.

To give a concrete example, if a dataset cat-
egorizes neighborhoods in a city according to a
particular land cover ontology and declares a cer-
tain area as 21. Developed, Open Space while re-
mote sensing data shows a highly developed area
with apartment complexes and industry, then the
assigned category is more “off” than a second
dataset classifying the same area as 23. Devel-
oped, Medium Intensity. Note that this does not
require a true categorization, but rather a refer-
ence dataset. Similarly as positional accuracy is
measured via spatial distance, semantic similarity
and analogy have been proposed as a semantic dis-
tance between classes defined in ontologies [24].

While we have only discussed the accuracy of
category assignment here, the general challenge
will be to develop measures for ontology qual-
ity, fitness for purpose, conceptual drift and evo-
lution, as well as a more detailed understanding
of the social construction of geographic feature
types (which especially also includes events and
processes).

Exploratory Interfaces

The ability to semi-automatically create faceted
user interfaces based on the underlying ontologies
is one of the great achievements of the Seman-
tic Web. This is made possible by shifting parts
of the application logic into the data and com-
bining it with well standardized reasoning services
and querying capabilities. However, more complex
queries and scientific workflows require new, ex-
ploratory interfaces, dialog systems, and new rea-
soning services based on analogies and similar-
ity [24].

For example, researchers may want to evalu-
ate a particular finding made in their study re-
gion by searching for related regions. In terms of
analogy-based reasoning, they are searching for
a region that differs in some properties, e.g., lo-
cation, culture, mean temperature, or population
density, while the properties to be evaluated, e.g.,
the spread of a disease, remain invariant. Seman-
tic similarity enabled interfaces can assist users
in browsing and navigating data while requiring
less knowledge about the underlying ontologies.
Besides improving semantics-based search inter-
faces, they also enable paradigms such as query-
by-example. Instead of explicitly querying for par-
ticular terms or classes, users can provide con-
crete examples which are then used to automati-
cally extract their commonalities, i.e., those prop-
erties that should remain invariant, and exploit
them for information retrieval or recommender
systems [24].

Combining analogy reasoning and similarity-
based query-by-example, enables searching for the
Riviera of the United States2 or the Deepwater
Horizon oil spill of the 1980s. In each of these
examples, and key for the construction of analo-
gies, particular characteristics remain invariant or
are generalized to their super-classes and super-
relations, while other characteristics are adjusted
by the system to compute results.

Dynamic Typing & the Dynamic Nature of Links

One of the core claims of Linked Data is that by
breaking up data silos we enable new and dynamic
ways in which data can be reused and combined.
A typical example is the extraction and triplifica-
tion of data from Web document. However, while
separating data from documents improves accessi-
bility it puts more burden on the interpretation.
Documents encapsulate information by providing
reference frames and context for the inherent data
and, thus, support the process of interpretation,
i.e., the reconstruction of what was meant with the
data. As a consequence, it is theoretically possible
to run queries over the Linked Data Web that span
over multiple sources to answer complex questions
and establish new links between data on-the-fly,
in practice, however, retrieving meaningful results

2Which is claimed to be Santa Barbara, but this can be

tested now.
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is challenging or even impossible. We assume that
these problems can be approached by ontologies
and semantic annotations, i.e., by developing more
intelligent and machine-interpretable metadata.

Surprisingly, in some cases this may have the
opposite effect. If we type data too early and with
classes that are loaded in terms of their ontolog-
ical commitments and domain specific views, we
may restrict reusability instead of fostering it. In
fact, scientists should rather prefer those classes
that can be deconstructed to observations. They
should also publish provenance data describing the
used procedures and workflows, as well as further
contextual information that may assist in the in-
terpretation of data. For instance, whether a par-
ticular area that is covered with trees constitutes
a forest [26], should be determined when the data
is reused in a given context and not prematurely
declared while publishing the data.

This does not mean that ontologies should not
introduce classes such as Forest but that these
ontologies should be available as external sources
in ontology repositories and combined with the
data at run-time. To realize the vision of a Dig-
ital Earth as knowledge engine, scientists should
be able to create ontologies for their specific needs
(or reuse existing ontologies) and then integrate
Linked Data based on the selected ontologies. As
will be argued below, ontology design patterns and
micro-ontologies may enable such a flexible selec-
tion and combination. To give a concrete example,
loading the same forestry dataset from the Linked
Data Web using a forest definition from Germany
produces radially different forests than applying
the Portuguese definition to the same data [26].
What can the Semantic Web learn from dynamic
and late typing approaches that have been suc-
cessful in software engineering? How do we de-
termine the 20% of knowledge engineering that
enables 80% of semantic interoperability without
over-engineering and restricting reusability?

The same argument made in proposing to un-
couple domain-specific ontologies from the data
level and its observation-driven ontologies, does
also hold for links. Many data providers, such as li-
braries or scientists, wanting to share their data do
not realize that linking on the Web is a highly dy-
namic process. The target of their link may change
in content frequently and is outside of their con-
trol – even more, relations such as owl:sameAs

are symmetric. How can this be brought in line

with the quality and archival needs of the scientific
community.

Knowledge Representation and Reasoning

The idea of a Digital Earth as knowledge en-
gine exposes several issues which have so far not
been resolved in Knowledge Representation and
Reasoning (KR) research – or in fact have even
been neglected. We discuss some of them in the
subsequent paragraphs.

Real data – even if we abstract from syntactic
issues – is usually noisy. Noisiness is here used
as a catch-all phrase indicating all kinds of issues
which make data integration and interoperabil-
ity difficult, including measurement and modeling
errors, use of different design patterns, different
viewpoints (i.e., semantic heterogeneity), vague-
ness (which includes uncertainty in the fuzzy set
theory sense, and probabilistic data), and so forth.
While some of these issues have been studied on
the schema level (see below), KR research has not
yet produced a significant body of research re-
sults which deals with data noisiness in the sense
of ground facts, i.e., the ABox. To a certain ex-
tent, some approaches from fuzzy logic, probabilis-
tic logics, and from inconsistency handling can be
carried over. Some approaches related to, e.g., de-
fault (and related) logics may be helpful for bridg-
ing semantic heterogeneity and diverging design
patterns. But overall, there is little work or experi-
ence in handling data noisiness at large scale, and
in uncontrolled settings like the Digital Earth. It
could be conjectured that the reason for this ne-
glect lies in the fact that these issues just have not
really arisen in practice so far. However, the vi-
sion presented here – and in more generality prob-
lems related to the handling of Big Data or Linked
Data – do raise these issues and give the finding of
solutions to them immediate practical relevance.

If we move from the data level to the schema
level (TBox ), i.e., to domain modeling with on-
tologies, then again we find that some issues im-
portant for the realization of a Big Data knowl-
edge engine are underdeveloped, i.e., the state of
the art does not provide ready-to-use solutions for
some central problems. Examples for such central
issues can easily be found when considering some
aspects of human cognition which would have to
be reflected in KR solutions. In particular, humans
excel in navigating different viewpoints, different
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scales, and different contexts, which are all aspects
which could be summarized under the notion of se-
mantic heterogeneity. We humans seem to be able
to effortlessly integrate such semantically hetero-
geneous information in most situations. Somewhat
more tangible based on the current state of the art
appear issues like the handling of stereotypes or
defaults, the mixing of open- and closed-world per-
spectives, and dealing with vagueness. However,
even with respect to the latter list, it is rather un-
clear how to adapt the state of the art to a model-
ing context with deliberate semantic heterogeneity
– and scalability and usability issues also remain
to be resolved.

The systematic use of well-designed ontology de-
sign patterns may provide a partial technical so-
lution to dealing with knowledge integration and
data interoperability in the presence of seman-
tic heterogeneity. Indeed, ontology design patterns
which have been created based on a consensus by
different stakeholders are naturally amenable to
different viewpoints, yet provide a single pattern
across usages and domains which can be lever-
aged for integration. This seems to indicate that
they are more suitable for heterogeneity preserva-
tion when integrating knowledge, than the use of
foundational ontologies, which necessarily forces
the strong ontological commitments made for the
foundational ontology onto the domain ontologies.
A hope would be, that a critical supply of (ap-
plication domain specific) ontology design pat-
terns could give rise to a network of local micro-
ontologies which capture specific definitions and
ontological commitments required for a specific
modeling or engineering task, in such a way that
these micro-ontologies are horizontally intercon-
nected and interconnectible through the fact that
they are based on the same design patterns [22].

Indeed a systematic use of ontology design pat-
terns would be a much preferable alternative to
the common shallow modeling first, deep modeling
(hopefully) later approach, which is bound to cre-
ate more trouble than solutions [20]. The trouble
comes from the experience that it is usually impos-
sible to start modeling with an inexpressive lan-
guage, in the hope to be able to add stronger onto-
logical commitments later: after initial “shallow”
modeling it will usually turn out that due to the
initial ambiguity of terms and modeling patterns,
the resulting knowledge base is no longer seman-
tically homogeneous, and thus cannot be seman-

tically strengthened in a way which is consistent
with the knowledge and data already present. A
recent and rather prominent example for the falla-
cies in this approach is the use of the owl:sameAs

language construct in Linked Data: While it occurs
in very substantial quantities,3 its usage is mostly
informal and in particular is not aligned with the
formal semantics that it should inherit from OWL
[14]– a problem which, at hindsight, could have
been avoided by taking deep semantics, in this
case, the formal meaning which owl:sameAs has
been given by the OWL formal semantics [27], into
consideration in the first place. By adhering to
well-designed ontology design patterns, modeling
could at first be restricted to dealing with the pat-
terns, while well-designed patterns will easily be
amenable to semantic strengthening.

On the algorithmic side, it has been proposed to
transcend the deductive paradigm by viewing on-
tology reasoning, at least partially, from an infor-
mation retrieval perspective [18]. The key idea is
to understand a deductive reasoning task (which
in its basic form yields a yes or a no as an-
swer) as a classification problem (classify the input
query as “yes” or as “no”). From this perspective,
deductive reasoning can at least in principle be
approached with information retrieval (i.e., non-
deductive) methods, the performance of which can
be assessed in terms of precision and recall, with
the output of a deductive reasoner as baseline. It
could then be hoped, that such non-deductive rea-
soning approaches could carry over to noisy or se-
mantically heterogeneous settings. Indeed, the po-
tential power of such non-deductive methods for
question answering has been shown at scale, and
in an impressive way, by the performance of IBM’s
Watson system in the Jeopardy! game show.

Ontology Alignment

Ontology alignment [9] refers to the creation
of formal relationships between entities in dif-
ferent ontologies. In the simplest and most
well-studied case, these relationships take the
form of subsumption (rdfs:subClassOf), class
equivalence (owl:equivalentClass), or equality
(owl:sameAs). Even for such simple relationsships,
which are well-studied in the ontology alignment

3See http://stats.lod2.eu/
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literature, the noisy nature of Linked Data ini-
tially prevented many established systems from
performing well, so that new approaches had to be
established [19,21].

In order to deal with semantic heterogeneity, on-
tology design patterns, and micro-ontologies, the
simple ontology alignment setting just described
needs to be lifted considerably towards more com-
plex alignments. Complexity, in this case, refers to
at least the following two dimensions.

(i) On the one hand, alignments need to be able
to map different modeling choices onto each other,
by making use of complex logical expressions. E.g.,
an example in [18] shows that the seemingly sim-
ple piece of information that “Nancy Pelosi voted
in favor of the 2009 health care bill” is modeled in
GovTrack using 8 rather convoluted RDF triples,
while a straightforward attempt to model the same
piece of knowledge, at the presented granularity,
would probably need much fewer triples with a
much clearer structure. A complex alignment (ex-
pressible in OWL [16] or RIF [5]) could then eas-
ily be described which maps one structural repre-
sentation to the other and vice versa. While this
example resides on the data level, it easily gen-
eralizes to the schema level, where such complex
alignments promise to be even more powerful.

(ii) On the other hand, alignment primitives
need to be established which differ in semantic
strength, such that they can be used to effectively
map between ontologies which are semantically
heterogeneous. An early but limited example of
this is C-OWL [6], which can be used to align on-
tologies in such a way that the combined knowl-
edge remains (somewhat) usable even if some of
the ontologies in the combination are inconsistent.
In a similar, but more fine-grained way, ontology
alignment methods need to be established which
control not only potential causes for inconsisten-
cies, but also cater for default alignments (which
may have exceptions), stereotypes, etc.

The research issue of providing such kinds of
alignment primitives can in fact not be separated
from research into dealing with micro-ontologies–
essentially, the same primitives which will be use-
ful for (weakly; semantically heterogeneously) in-
tegrating micro-ontologies will also be the primi-
tives which have to be studied for ontology align-
ment. As before, the role of well-designed ontol-
ogy design patterns as kernels for integration and
alignment should not be underestimated; indeed

in the case of reused patterns, some part of the
alignment problem becomes almost trivial.

The big research issue with both kinds of com-
plex ontology alignments is, obviously, how to cre-
ate such alignments using automated methods. In-
deed, there is, as yet, embarrassingly little research
on this issue.

Conclusion

Realizing the laid out vision of a Digital Earth
as a knowledge engine requires to develop generic
methods and tools driven by a concrete but vast
goal. For example, with respect to ontology rea-
soning, this requires the development of practi-
cally applicable integrated methods for dealing
with stereotypes and defaults, with weak notions
of equivalence, with noise and inconsistency in the
data, etc., all of which have been studied in the
ivory tower but have not yet had substantial im-
pact on practice [18]. Similar advances are required
in other fields, driven by a concrete application vi-
sion. Such a channeling of resources has the po-
tential to be catalytic for future research and to
be a showcase for the added value and strength
of the Semantic Web, in a similar way in which
RoboCup transformed robotics.

If we resist the temptation to follow the seem-
ingly simple path by trying to resolve semantic
heterogeneity, but instead accept heterogeneity as
the motor of science, we can expect that work on
semantics-driven integrity constraint checking, on-
tology matching and alignment, reasoning in the
presence of inconsistencies and uncertainty, de-
faults, semantic negotiation, similarity and anal-
ogy reasoning, bottom-up semantics, inductive ap-
proaches, and so forth will play a key role in inter-
disciplinary research. It is a common misconcep-
tion that interoperability could only be achieved
by a rigid standardization process that results in
a small number of foundational and domain level
ontologies. Instead, we should exploit the power
of Semantic Web technologies and knowledge pat-
terns to directly establish interoperability between
purpose-driven ontologies without having to agree
on a universal level before.

Finally, as a research community, we need to
emphasize the paradigm shift proposed by the Se-
mantic Web and Linked Data and abstract from
specific technological solutions. We need to explain
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how to derive ontologies from scientific workflows
and data and demonstrate the added value of pub-
lishing Linked Data in a way that relates to the
immediate needs of individual researchers. What
are the minimal requirements for these researchers
to actively participate and contribute their data?
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