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ABSTRACT
The semantic integration of heterogeneous, spatiotemporal infor-
mation is a major challenge for achieving the vision of a multi-
thematic and multi-perspective Digital Earth. The Semantic Web
technology stack has been proposed to address the integration prob-
lem by knowledge representation languages and reasoning. How-
ever approaches such as the Web Ontology Languages (OWL) were
developed with decidability in mind. They do not integrate well
with established modeling paradigms in the geosciences that are
dominated by numerical and geometric methods. Additionally,
work on the Semantic Web is mostly feature-centric and a field-
based view is difficult to integrate. A layer specifying the transi-
tion from observation data to classes and relations is missing. In
this work we combine OWL with geometric and topological lan-
guage constructs based on similarity spaces. Our approach pro-
vides three main benefits. First, class constructors can be built
from a larger palette of mathematical operations based on vector
algebra. Second, it affords the representation of prototype-based
classes. Third, it facilitates the representation of classes derived
from machine learning classifiers that utilize a multi-dimensional
feature space. Instead of following a one-size-fits-all approach, our
work allows one to derive contextualized OWL ontologies by reifi-
cation of observation data.
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1. INTRODUCTION
In the past, description logics-based knowledge representation lan-
guages have been often misunderstood as a replacement to numeri-
cal and statistical modeling. Instead, ontologies are best understood
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as a communication and exchange layer. While the geosciences
rely on observations, models, and simulations to answer complex
scientific questions such as the impact of global change, the ma-
jority of results are communicated and exchanged using categories.
For instance, we study deforestation, mountain microclimate, or
rural economics by referring to forests, mountains, or towns. How-
ever, the definition of these terms differs between domains and even
within information communities. Meta-studies have shown that
data combined on the category level is, in fact, often incommen-
surable due to the hidden ambiguities in the definition of the used
categories. For instance, research addressing the question of how
green different sources of renewable energy are, has used different
measures, criteria, and weights to define greenness; see also [35]
for a public policy perspective. Whether the destruction of rare
ecosystems by large solar power plants reduces the greenness of
solar energy or not differs between studies. Even more, how do
we arrive at an objective quantification for the value of a specific
ecosystem to determine weights for our measures? By restricting
the interpretation of the used terms towards their intended meaning
[25, 29], ontologies can assist in uncovering such incompatibilities
and foster semantic interoperability.

The ability to formally describe and infer the semantics of terms,
their combinations, and their relationships using a knowledge rep-
resentation language is a fundamental component of the Semantic
Web. Description logics, which form the basis for the Web Ontol-
ogy Language (OWL), presuppose the representation of a class as
a set of individuals that share certain properties; i.e., it considers
the necessary and sufficient features required for membership in a
class. However, as argued by Sheth at al. [46], limiting ontolo-
gies by restricting them to a description logics-based formalization
will artificially limit their adaptation and suitability to model com-
plex domain knowledge as described above. Consequently, various
extensions to knowledge representation languages such as OWL
have been proposed within the last years. For instance, Bouquet et
al. [6] proposed C-OWL to define contextualized, local ontologies
and connect them via bridge rules, while Stoilos et al. [49] propose
various fuzzy extensions to OWL. A review of approaches to han-
dle uncertainty and vagueness on the Semantic Web was recently
published by Lukasiewicz and Straccia [31].

Research from cognitive science shows ample evidence of cate-
gories with graded membership based on the similarity of entities
to one or multiple prototypes [42, 23]. One result of this finding is
that similarity-based classification has become a common approach
in machine learning algorithms [37]. Further, Gärdenfors [18] has
argued that the standard set-theoretic concept combination opera-
tions central to OWL do not fully capture the way how humans



combine the meanings of terms in natural languages. He proposed
the use of a geometric and topological framework called conceptual
spaces that allows to define semantic operations, such as concept
combination, as mathematical operations on the points and regions
in a semantic space. Central to this work is that similarity mea-
surement, encoded as a weighted distance function in this space,
is a fundamental component to the learning of new properties and
complex concepts [19]. Recently, Raubal and Adams proposed to
use Gärdenfors’ notion of conceptual spaces to personalize search
on the Semantic Web [40].

Measuring semantic similarity between concepts or individuals de-
fined by an ontology has been successfully applied in GIScience
and also the Semantic Web within the last years. Application ar-
eas range from semantic interoperability and ontology matching
to understanding uncertainty in geographic feature types and land
use classes to semantics-enabled geographic information retrieval
[15, 39, 3, 10, 28]. However, so far, similarity has been applied as
a measurement over pre-designed ontologies, i.e. as a posteriori
measures on the representations. For instance, common techniques
involve measuring similarity as function of edge distance in sub-
sumption hierarchies. As a result, similarity reasoning is not used
to construct ontologies but to quantify differences in or between
existing ontologies.

While geometric representations, e.g., based on conceptual spaces,
offer an intuitive approach to semantic similarity as analogy to spa-
tial distance, they often lack clear means for combining the con-
cepts they represented and making inferences on those combina-
tions. For example, it is not clear how one might take a shape de-
scriptor for a prototypical leaf image and combine it with a shape
descriptor for round objects to infer a representation of a round leaf
class. In contrast, description logics do provide mechanisms for in-
ferring the semantics of concept combinations but rely on the set-
theoretic intersection, union, and negation operations, which are
insufficient for handling many kinds of concept combinations that
humans perform, such as in the previous example. One reason is
that combination is not symmetric; there is a modifier concept and
a modified concept. And more important the semantics of the mod-
ifier changes depending on the concept being modified. For ex-
ample, the semantics of round are quite different when attached to
leaf as opposed to ball. Gärdenfors argues that the geometric ap-
proach gives us better mechanisms for reasoning over these kinds
of concept combinations [17].

Based on Couclelis’ framework of semantic contraction [9], we
propose to use conceptual spaces with similarity-based class con-
structors as meta-language to create contextualized OWL ontolo-
gies. To do so, we present a hybrid, dual layered approach that
combines OWL 2 with a logical formalism for conceptual spaces
called OWL 2 CS. To combine these formalisms we define a func-
tion, which we call a reification function [27, 43], that maps from
the domains of points, regions, and dimensions within a concep-
tual space to the range of instances, properties, and classes in an
OWL 2 ontology. Following our approach, concepts can be repre-
sented as geometric regions and points in a structured set of multi-
dimensional metric spaces [17, 2]. In contrast to previous work [6,
49, 31], we do not argue for more expressive extensions to OWL,
but propose an architectural solution. We argue that geometric ap-
proaches are most suitable on levels 2 (observables) and 3 (similar-
ities) of Couclelis’ framework, i.e., on the level of fields – before
objects are introduced [24]. Contextualized ontologies can be de-
rived from conceptual spaces based on reification; cp. level 4 and

5 of the semantic contraction framework. As these ontologies are
specified in OWL, they are decidable and compatible with the vast
spectrum of Semantic Web technologies. The conceptual space-
based meta-level acts as provenance information [51] and fosters
interoperation by semantic translations; see Figure 1. Just recently,
the report from the Climate Knowledge Discovery Workshop 2011
underpins the need for a provenance-enabled framework that helps
to integrate numerical models with ontologies [7].

Figure 1: Observation-driven ontology engineering: Observations
and numerical models act as the basis for representing knowledge
by conceptual spaces. Using a reification function and a threshold-
based similarity class connective, these representations are mapped
to contextualized OWL ontologies for use on the Semantic Geospa-
tial Web [14]. To understand how these ontologies were derived,
the classes can be re-reified to conceptual spaces again.

The remainder of the paper is structured as follows. First, we intro-
duce preliminaries required for the understanding of our work and
highlight related research. Next, in section 3, we describe a formal
theory of conceptual spaces. Section 4 specifies the integration of
our work with OWL. In section 5, we discuss the creation of con-
textualized OWL ontologies by reification of regions in conceptual
spaces. Finally, we conclude our work and highlight directions of
further research.

2. PRELIMINARIES
In this section we provide preliminary information on the Web On-
tology Language, conceptual spaces, and related works.

2.1 OWL 2
OWL 2 is a Semantic Web language to represent domain knowl-
edge in the form of ontologies specified by axioms, entities, and
expressions. Axioms are propositions that state certain facts about
the world are true, and can be used to deduce other facts through
logical implication. Entities are the atomic components of these
axioms and consist of individuals, classes, and properties. Indi-
viduals represent objects in the world (though they can be abstract
non-physical objects), classes represent sets of objects, and proper-
ties, called roles, represent binary relations. A distinction is made
between object properties, which represent a relation between an
object and another object, and datatype properties, which relate a
data value to an object. These entities can be combined using log-
ical connectives, such as conjunction and disjunction, into expres-
sions. The type of class and property connectives available for use
in a particular OWL profile has a direct impact on the decidability
and complexity of this language.

The model theoretic semantics of OWL 2 are very closely based
on the semantics of the SROIQ description logic with the addi-
tion of concrete datatypes and punning where individuals, classes,
and properties have a direct correspondence to instances, concepts,



and roles, respectively, in SROIQ [38]. The signature or vo-
cabulary of an OWL 2 ontology is defined as a 7-tuple V =
(VC , VOP , VDP , VI , VDT , VLT , VFA) where VC is a set of classes,
VOP is a set of object properties, VDP is a set of data properties,
VI is a set of individuals, VDT is a set of datatypes, VLT is a set of
literals (i.e., data values), and VFA is a set of constraining facet and
value pairs. This vocabulary is defined over a datatype map, which
is a set of datatypes that are mostly derived from the XML Schema
datatypes, such as xsd:integer and xsd:float. Without going into any
details here, the semantics of OWL is given by the interpretation
function .I that maps expressions to sets, e.g., C uD = CI ∩DI
for the conjunction of classes; see OWL 2 Overview for more in-
formation: http://www.w3.org/TR/owl2-overview/.

There exist a number of different syntaxes for OWL that are equally
expressible, although all OWL reasoners are required to support the
RDF/XML serialization of the language. We use the functional-
style syntax to describe OWL 2 CS, simply because it is the most
efficacious in terms of both readability and space constraints. A
future work will be to fully specify an RDF/XML serialization
for OWL 2 CS by combining OWL 2 with a suitably extended
RDF/XML version of the Conceptual Space Markup Language
(CSML) defined in previous work [1].

2.2 Conceptual Spaces
Conceptual spaces are a geometric and topological framework for
knowledge representation proposed by Gärdenfors [17]. A concep-
tual space is a mathematically defined space composed of quality
dimensions, which is further structured by the organization of the
dimensions into disjoint groups called domains. An example of
a domain is color with three quality dimensions hue, value, and
saturation. This organization is exploited for semantic reasoning
such as concept combination. Quality dimensions within a domain
are integral dimensions that are separable from dimensions in other
domains. This notion of integral dimensions corresponds to the
use of the term in psychological research whereby an object cannot
have a value for a dimension without also having a value for the
dimensions with which it is integral [20]. For example, the color of
an object cannot be described fully without having a value for all
three dimensions: hue, value, and saturation.

In conceptual spaces, a property is defined as a region in one do-
main, e.g., the property red is represented by a region in the color
domain. Concepts are represented as sets of regions (i.e., proper-
ties) along with information indicating how the properties are cor-
related. Objects in a conceptual space are represented by a set of
quality values, {q1,q2, . . . ,qn}. Gärdenfors and Williams [19]
showed how to reason about categories represented in a concep-
tual space using the region connection calculus. Furthermore, they
illustrated that conceptual spaces can be used to model context-
sensitive, non-monotonic categorization. Adams and Raubal [2]
presented a formal algebra that describes operations for concept
combination on concepts and properties represented in a such a
space. Techniques for learning regions include Voronoi tessella-
tion, nearest neighbor, and clustering algorithms [11, 37].

The terms instance, concept, property, and domain have different
meanings in OWL and conceptual spaces. We will use the conven-
tion of prefixing those terms with CS when referring to conceptual
spaces. Without appellation those terms should be assumed to have
their standard meaning in description logics. For example, a “CS
property” is a property represented as a region in a conceptual space
domain whereas a “property” is a property in an OWL ontology.

2.3 Related works
Sheremet et al. [45] have developed a logic for concepts and simi-
larity that combines theALCQIO description logic with a similar-
ity logic SL. The work presented here is different in that it imposes
a conceptual space structure upon the similarity spaces. This struc-
ture has the benefit that it has formal operations for concept combi-
nation, and that convexity of regions in the space plays a principal
role in the interpretation of its semantics. The formulation of con-
ceptual space theory described below expands on previous work on
a conceptual space algebra [2]. It also draws from previous work on
the development of hybrid logics that contain both description logic
and metric space logic components [30], although the CS logic has
a more complex structure than their MS logic. For an examina-
tion of the relation between conceptual spaces and frames and how
one might recover a frame model from a conceptual space model
see [52]. Dietze et al. have proposed a conceptual space layer
to aid context aware discovery of Semantic Web services [12]. In
our work, the primarily concern is the use of conceptual represen-
tations to facilitate class construction and learning. The approach
presented here is akin to Goguen’s [22] Unified Concept Theory
for combining symbolic and geometric representations through re-
lations, though our approach is not based on category theory.

3. CONCEPTUAL SPACE THEORY
In this section we define the elements of a conceptual space and
present a motivating example. The theory builds upon the metric
conceptual space algebra [2] but uses a different symbology to bet-
ter align with description logics. The section also describes a proto-
type as a relation between a concept and an instance, and introduces
a formal representation of correlations between dimensions.

3.1 Motivating example
Mountain is a geographic feature type that figures prominently in
people’s conceptualizations of geographic space [34]. However,
although Mountain is an archetypal type there is no universal, for-
mal definition for mountain [48]. In fact, mountains are objects
without clearly defined boundaries and the necessary and sufficient
features for membership in the mountain class are highly location-
dependent. This localness of the mountain concept is illustrated
by the map of the world’s “principal” mountains and rivers shown
in Figure 2 [36]. In this map from 1846 the relative heights of
mountains and lengths of rivers are shown schematically. Implic-
itly, the definition of a “principal” is based on height but also varies
greatly by region. Mountains from England are illustrated even
though all of those principal mountains are significantly shorter
than many Asian mountains that are not shown. These differ-
ences stem not only from cultural differences but also the inher-
ent context-dependence of geographic concepts. Traditionally, GI-
Scientists have avoided representations that operate on mountain
objects in lieu of operating on field based elevation data and us-
ing related methods. However, to realize a Digital Earth that inter-
faces with humans, it is imperative to create ontologies that define
semantics of terms such as Mountain using links to observation
data. To illustrate the elements of the CS theory, we discuss how
observation data about mountains can be used to create different,
context-dependent Mountain classes for geo-ontologies.

3.2 Definitions
Definition 1. CS/D. A CS domain (CS/D) is a bounded met-

ric space, 〈M,d〉, where M is a set of points and d is a distance
function (1).

d :M ×M → {0} ∪ R+. (1)



Figure 2: Heights of the principal mountains in the world; see
http://bit.ly/mecWLs for a high resolution image.

A set of named quality dimensions (CS/Q) form the basis of a
CS/D.

Example 1. For mountain features, examples of observable
quality dimensions include altitude, relative relief, slope steepness,
prominence, topographic isolation, and land volume [21]. These
values are recoverable for any location from a digital elevation
model or other type of field-based representation. See Figure 3
for an illustration of a domain. Further domains may be defined
based on vegetation, climate information, shape, and so forth.
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Figure 3: A sample domain for representing properties of peaks
drawn from continuous field.

A context-based semantic distance function on a CS/D composed
of continuous CS/Qs is defined as a weighted Minkowski distance
metric (2).

d(x,y,w) =

(
n∑

i=1

wi(xi − yi)p
)1/p

(2)

where x and y are vectors of quality dimension values for an n di-
mensional domain and w is a vector of weights on the dimensions.
The order of the distance, p, will typically be 2 (Euclidean) or 1

(Manhattan). Similarity and semantic distance are dual concepts,
and a measure of similarity in a conceptual space is an (often expo-
nentially) decaying function of distance [44]. The choice of an ap-
propriate distance metric and its corresponding similarity function
is application dependent. Given that a CS/D is metric it satisfies
the axioms of identity, symmetry, and triangle inequality. However,
in accordance with the literature, the latter two are relaxed by the
introduction of saliency weights on the dimensions.

It follows from this definition that domains and quality dimensions
present a means for ordering property values. Although conceptual
spaces allow for nominal quality dimensions, due to our hybrid ap-
proach there is no benefit of having dimensions without an ordering
(as this reduces the expressiveness to set theory-based representa-
tions). From an engineering perspective it often makes sense to de-
fine the quality dimensions as normalized dimensions, from [0,1] or
using a z-score [39]. This normalization has the benefit of making
the semantic distance measure scale independent. For simplicity,
we will assume a [0,1] normalization for every dimension, though
this is not a requirement.

Definition 2. CS/P . A CS property (CS/P) is a region in a
CS/D, where a region is defined as a star-convex set of points in
the space.

For semantic reasoning we place a special emphasis on the subset
of CS properties that satisfy a given betweenness relationship for
all points i ∈ CS/P , which are denoted as natural CS properties
(CS/NP). A strong definition of betweenness defines a CS/NP
as a convex region in CS/D, such that for all i and j ∈ CS/NP
and all x ∈ [0, 1] the point (1 − x)i + xj ∈ CS/NP . A CS/P
that is not a CS/NP is termed a refined property, CS/RP .

Let p and q be CS/NPs. Following the definition of convexity,
p ∩ q is also a CS/NP . If p ⊆ q then p is a subProperty of
q. For all CS/RP there exists a set of CS/NPs, N , such that⋃

i∈N i = CS/RP . Computationally efficient approximations
of CS/NP are hypersphere or polytope representations. A hy-
persphere CS/NP can be constructed from a point and distance
pair. Polytope representations can be constructed from convex hull,
Voronoi tessellation, and other numerical classification algorithms.

Example 2. Compositional properties such as tall and high are
represented as regions in a domain as well, though they entail dif-
ferent inferences from non-compositional properties when com-
bined with other classes; see next section for more explanation.
Classes defined by such properties are known as contrast classes
[17]. Figure 4 shows how one can represent tall and high as re-
gions in the domain from the previous example. Note that in this
representation high depends solely on altitude while tall depends
on relative relief. It should be stressed that these definitions are
simplifications, and just like in any forms of ontology development
the choice of property definitions in a conceptual space is appli-
cation dependent. More complicated properties such as visually
impressive can be defined as regions based on a functional such as
the Omnidirectional Relief and Steepness (ORS) measure [13].

Definition 3. CS/I. A CS instance (CS/I) is a set of points
{i1, i2, . . . , in} such that every point is in a distinct CS/D.

From Definitions 2 and 3 we see that a CS/P consisting of one
point is semantically equivalent to a CS/I in one domain. Fol-
lowing [2] the distance between two instances (Equation (3)) can
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Figure 4: Sample properties.

be defined as a weighted sum of the intradomain point distances
calculated using Equation (2).

d(CS/I1, CS/I2) =
D∑
i=1

kid(xi,yi,wi) , (3)

where D is the number of domains shared by the instances and
ki is a salience weight on the ith domain. Imposing weights on
the domains allows one to emphasize some properties over others
depending on the context.

Example 3. Individual mountain objects are represented as sets
of points based on observation data; see Figure 5 for an example
of points in one domain. For a given mountain one can represent
other properties in additional domains as described above.
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Figure 5: Sample instances.

Definition 4. CS/C. A CS concept (CS/C) is a tuple 〈P,Cor〉
where P is a finite set of CS properties {p1, p2, . . . , pm}, and Cor
is a cross covariance matrix. Every property in P is a region in a
distinct CS/D. Cor describes the pairwise correlations between
all the quality dimensions in the set of CS/Ds covered by P .

A concept is a generalization of a property extended across mul-
tiple domains. An instance I is an instanceOf a concept if for all
points i in I there exists a property p in P , such that i is contained

within the region of p. Likewise, one concept has an isA relation-
ship to another concept if the former’s regions are all contained
within the latter. The conditions for instanceOf and isA are not
necessary and sufficient, because subsumption reasoning for con-
cepts and instances can be more complicated in a conceptual space.
For example, concept combination can be non-monotonic; see be-
low. Therefore, the subsumption reasoning must be extended with
the notion of a similarity-based subsumption as well.

Intuitively, this means that if we repeatedly combine a concept with
a modifier the new concepts will change from being sub-concepts
of the original concept to not being subsumed. For example, if we
modify the lake concept with the property salinity it might still be a
lake, but if we modify it again to be the size of an ocean then it will
no longer be a lake. Because dimensions are weighted for similarity
measurement, combinations that involve changing quality values of
highly salient properties will more likely make the new concept not
subsumed by the original. In the previous example, size is more
salient than salinity.

Example 4. The concept of a mountain is different depending
on where you are in the world. The tallest mountains in England
would scarcely be foothills in Himalayas. In a conceptual space
a mountain concept (i.e., its set of necessary properties) is defined
based on observation data and different data (e.g., from different
locales) will produce different representations. For example, by
finding the convex hull of mountain instances in England we can
represent the local mountain concept for England and likewise for
Asia; see Figure 6. This approach is related to the methodology of
Bennett et al [5].
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Figure 6: Sample mountain concepts.

Definition 5. Prototype. The prototype relation is a binary rela-
tion on the set of concepts and instances, 〈C × I〉 with the restric-
tion that all points in I must be elements of a property of C.

It may be convenient to define the prototype as the centroids of the
property regions, but other points may be appropriate as well. For
example, a good representation of a prototypical mountain may not
be the “average” mountain based on a set of observations. Similar
to trees, a prototypical mountain corresponds to an extreme value
along an “ideal” quality dimension such as altitude [32].

Definition 6. instanceOf. Let I be a CS/I and C be a CS/C.
I is an instanceOf C iff it meets the above criteria in Definition 4
OR the weighted distance between I and the prototype of C is less
than or equal to α, a scalar similarity threshold.

Definition 7. isA. Let C1 and C2 be CS/Cs. C1 isA C2 iff it
meets the above criteria in Definition 4 OR the distance between
C1 and C2 is less than or equal to β, a scalar similarity threshold.



The simplest definition of distance between two concepts is the
weighted distance between the prototypes of the two concepts. An
alternative measure is the weighted sum of Hausdorff distances be-
tween properties. The Hausdorff distance is a measure of how close
two sets are in a metric space and has found wide use in many ap-
plications such as image similarity [26]. Let X and Y be two sets
it is defined in Equation (4):

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) } (4)

If X and Y are convex sets the Hausdorff distance is equal to the
Hausdorff distance of the boundaries of X and Y [50]. Let P =
{p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} be sets of CS/P for
two concepts described in n domains. The distance between P and
Q is shown in Equation (5): sections

n∑
i

widH(pi, qi) (5)

This assumes that P and Q are defined for the same domains.

As previously discussed, since instanceOf and isA relations are de-
fined in part by a weighted similarity measurement, the determi-
nation of whether or not a subsumption relationship exists in any
given situation is context-dependent.

Definition 8. A CS knowledge base (CS/K) is defined as an or-
dered triple 〈D, I, C〉, where D is a finite set of CS domains, I is
a finite set of CS instances, and C is a finite set of CS concepts.

We will use the short hand term conceptual space to mean a CS/K,
though in fact a knowledge base can contain not only multiple
spaces (domains), it also specifies the contents of those spaces.

4. INTRODUCING OWL 2 CS
In this section we introduce OWL 2 CS, an approach for combin-
ing the components of a CS/K with an OWL ontology into a com-
mon serialization. In addition to named classes, properties, and in-
stances, an OWL 2 CS file has named CS domains, CS properties,
CS instances, and CS concepts. The CS structures can be described
using the Conceptual Space Markup Language (CSML), which al-
lows to assert a unique IRI for each element in a conceptual space
[1]. An OWL 2 CS file therefore is an XML serialization with both
OWL and CSML elements. Due to space restrictions we will use an
equivalent functional-style syntax in place of CSML (see table 1).
In the examples shown a region in a domain is specified as a system
of linear inequalities using the LinearInequalities function,
which has the semantics of being an anonymous property. In place
of any LinearInequalities construct, a named property can
also be used.

4.1 Concept constructors
One of the main advantages of the conceptual space theory is that
one can define concept constructors that go beyond set intersection
and union. The construction of a concept from the combination of
two other concepts in a conceptual space takes the form of one of
several possible mathematical operations. Adams and Raubal [2]
defined three such operations: 1) property-concept combination, 2)
concept-concept combination, and 3) contrast class-concept combi-
nation. These three operations take as input a modifier in the form

of one or more regions (i.e., a property or concept) and a concept
to be modified. Given these inputs it outputs a new concept. For 1)
and 3) the resulting concept is only modified in one domain. These
combinations correspond roughly to adjective-noun combinations
like long river. A concept-concept combination will combine con-
cepts across more than one domain with a salience indicator on
the domains that indicates in which domains the properties should
change. This combination corresponds roughly to noun-noun com-
binations like desert town.

Contrast classes are properties that are combined by taking the
shape of the contrast class and projecting onto the property of the
modified concept in that domain. Refer to [2] for a detailed math-
ematical explication on how this and other combination operations
work. In the example of long river, the long property is a region
specifying a range along the upper part of the length dimension.
See Figure 7 for an illustration for how the semantics of the modi-
fying property, such as long or short, is inferred differently depend-
ing on the concept that it is modifying. In that example long British
river is more similar to a short North American river than long
North American river. The similarity between these properties is
formally measured in terms of the Hausdorff distance as described
in the previous section. In fact, when considering only the length
dimension long British river isA short N. American river, since it is
a subset. However, when including other properties of rivers, such
as their locations this is no longer the case. In the following section
we show how by specifying a context in terms of salience weights
on the dimensions we can generate different isA relations.

0
length quality dimension

longshort

British river

River
Severn

North American river

Mississippi
Missouri
Jefferson

0
longshort

long
British river
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N. American

 river

long
N. American

 river

Figure 7: Illustration of contrast class-concept combination (only
length dimension shown).

CSML does not as of yet have XML serializations for defining
CS concept constructions, and due to space constraints we present
these operations in a functional-style notation for OWL 2 CS. We
define the EquivalentConcept constructor for the CS entities to be
an analog to the EquivalentClass constructor in OWL 2:

EquivalentConcept(:salineLake
PropertyConceptCombination(

:saline :lake ) )

EquivalentConcept(:desertTown
ConceptConceptCombination(

:desert (:climate)
:town ) )

EquivalentConcept(:tallMountain
ContrastClassConceptCombination(

:tall :mountain ) )

EquivalentConcept(:longRiver
ContrastClassConceptCombination(

:long :river ) )



CS element Example functional notation
Domain

Domain(:fromElevationData
QualityDimensions( (:altitude 0.0 1.0) (:relativeRelief 0.0 1.0) ) )

Property
Property(:tall :fromElevationData

(LinearInequalities( (>= :relativeRelief 0.7) (>= :altitude 0.0) ) )

Instance
Instance(:scafellPike

(:fromElevationData (:altitude 0.11) (:relativeRelief 0.14) )
(:fromClimateData (:avgWindSpeed ... ) ... ) ... )

Concept
Concept(:britishMountain

(:fromElevationData (LinearInequalities ( ... ) ) )
(:fromClimateData (LinearInequalities( ... ) ) ) ...
CovarianceMatrix ( [0.07 0.42 -0.13 ... ] [ ... ] ) )

Table 1: Functional notation for declaration of CS elements

In the above examples :saline, :tall, and :long are CS/Ps; :lake,
:desert, :town, :mountain, and :river are CS/Cs; and :climate is
a CS/D. The concept-concept combination shown indicates that
we want to combine the :climate property only of :desert with the
:lake concept. The new concepts :salineLake, :desertTown, :tall-
Mountain, and :longRiver are all CS/Cs, which means that they
will be written in CSML as sets of convex regions represented as
systems of linear inequalities. It should be noted that these opera-
tions as defined in [2] do not incorporate the correlation informa-
tion as part of each CS/Cs description.

4.2 Different Approach to Semantics
Conceptual spaces are a framework for knowledge representation
that is based in part on the paradigm of cognitive semantics [16].
A key aspect of cognitive semantics is that the meaning of a term
is a conceptual structure (in the mind of an agent) and this mean-
ing comes prior to any notion of truth assignments on sentences
built with these terms. This approach to semantics is different
from model-theoretic semantics, which defines meaning in terms
of truth-values in possible worlds [8]. By creating a hybrid repre-
sentation that builds conceptual spaces on top of description logics,
however, we must on some level reconcile these two approaches to
semantics. The approach we take is that an OWL reification func-
tion is a fixing of the cognitive semantic representation to a possible
world where truth-values are assigned. In the case that the concep-
tual regions in a conceptual space are learned from observations of
phenomena in the world, we can say that an OWL reification of
the conceptual space is a model-theoretic interpretation of the ge-
ometric and topological configuration of the regions learned in the
space.

5. REIFICATION
The reification of an OWL 2 CS ontology to an OWL 2 ontology
maps the entities in the CS layer into strict OWL 2 entities. For a
concepts defined by prototypical instances, this translation results
in a loss of information because the boundaries of classes must
be defined for a particular similarity threshold and the notion of
a prototype is lost. In addition, no information about correlations is
saved. Reification, therefore, freezes the ontology into a particular
contextual stance. The advantage is that it results in an ontology
that can be reasoned with by existing semantic reasoners and which

is decidable. Ideally, from an ontology engineering perspective, the
relation is maintained between the reified ontology and the original
OWL 2 CS, which affords the ability to do decidable reasoning
but still access the more fine-grained representation for similarity
reasoning and more complex concept combinations.

The following describes a suggested correspondence of OWL en-
tities to elements of a conceptual space model. Note, that alter-
nate reification functions can be defined. Classes correspond to CS
concepts, object properties correspond to CS quality dimensions
and domains, and individuals correspond to CS instances and CS
properties. The latter may seem counterintuitive; however, a CS
property is best considered as a property value whereas the ob-
ject properties (in OWL terminology) that relate CS instances to
CS properties are derived from the domain structure. In fact, the
compressing of points and regions in a conceptual space into one
type (OWL individual) is consequent from the semantic contraction
from fields to objects.

5.1 Mapping rules
A CS to OWL 2 mapping, M , shown in Equation (6) is a function
from a CS/K (i.e., a set of domains, instances, and concepts and
their constituent properties) into an OWL 2 vocabulary.

M : CS/K → V (6)

In this section we present some basic rules for performing this
translation for different circumstances. We use the symbology of
ρ(·) to represent the reification function that generates OWL ax-
ioms from the elements of a conceptual space. A conceptual space
provenance function is the inverse of the reification function ρ−(·)
mapping OWL entities to a conceptual space elements. Since both
the OWL and CS elements (encoded in CSML) are identified by
unique IRIs, a relation can be stored mapping the translated OWL
entities back to the appropriate element at the CS layer. In the
translated OWL ontology this is an defined as an object property,
:hasConceptualSpaceProvenance that is an inverse of the :has-
Reification property. This way semantic similarity reasoners and
other tools can be developed that utilize both the CS and OWL lay-
ers as needed.

CS/D → set of transitive object properties



A domain is a set of quality dimensions and each dimension in
a domain is translated into a pair of inverse object properties
that are transitive, :hasMoreDimension and :hasLessDimension.
For example, the length dimension generates :hasMoreLength
and :hasLessLength object properties. Let QCS be a CS/Q,
ρ(DCS) = p ∈ VOP . In addition, the domain is defined as an
AsymmetricObjectProperty(:hasDomainValue). Let DCS be a
CS/D, ρ(DCS) = p ∈ VOP . This property is a relation between
individuals created from data observation instances and individuals
created from named CS/Ps.

CS/P → individual
When mapping an OWL 2 CS hybrid model into an OWL 2
ontology, CS regions are translated into individuals. Let PCS be a
CS/P , ρ(PCS) = i ∈ VI . Since there are infinitely many possible
regions in a conceptual space only named property regions and
the unnamed regions defined as parts of CS concepts are actually
translated. For each named ρ(PCS) a new class is also defined as

EquivalentClass( :PropertyObjects
ObjectSomeValuesFrom( :hasDomainValue ρ(PCS) )).

For all P
′
CS ⊆ PCS :

subClassOf( :Property’Objects :PropertyObjects ).

CS/I → object property assertions
Let ICS be a CS/I, ρ(ICS) = i ∈ VI . For every point defined
as part of a CS/I a set of object property assertions is made. Two
different approaches can be taken for these assertions depending
on the application: a similarity-based approach or an inclusion-
based approach. The similarity-based approach is taken when the
properties are defined primarily by their prototype instance and is
context dependent based on weights, w, on the dimensions.

Algorithm 1 Similarity-based instance to object property assertion

for all points ∈ CS/I do
for all CS/P in domain of point do

if d(point, prototype of property, w) < a then
ObjectPropertyAssertion(:hasDomainValue ρ(ICS)
ρ(PCS))

end if
end for

end for

Rather than doing a test based on distance, the inclusion-based
approach tests if a point falls within a CS property region. The
inclusion-based approach is ultimately based on similarity because
the regions are constructed geometrically utilizing a distance met-
ric, but the thresholds are predefined in the CS layer rather than
during the reification stage. As discussed in [2] if a property re-
gion is defined as a system of n linear inequalities then this point
inclusion test is O(n).

CS/C → class
Let CCS be a CS/C, ρ(CCS) = c ∈ VC . For any mapping from a
CS/C to an OWL class, the set of salient domains must be speci-
fied. For example, while there can be different types of observation
measurements associated with a mountain concept that are repre-
sented in separate domains within a conceptual space, only a subset
of the CS properties will be necessary properties for a given reifi-
cation. The new class reification can be defined either in terms of

property restrictions on properties reified from domains (as above)
or as a closed class that is an enumeration of all the ρ(ICS) individ-
uals reified from CS instances that satisfy the instanceOf relation
described in Section 3.

The new class defined as a property restriction on this set of CS
properties takes the following form:

EquivalentClasses(ρ(CCS) ObjectIntersectionOf(
ObjectSomeValuesFrom( :hasDomain1Value ρ(PCS))
ObjectSomeValuesFrom( :hasDomain2Value ρ(P

′
CS)) . . . ))

When reified as an enumeration of individuals the new class is
defined based on a context-dependent weighted similarity mea-
sure. EquivalentClasses(ρ(CCS) ObjectOneOf(ρ(ICS1) ρ(ICS2)
. . . )), where d(ICSi , CCS , w) < a. Similarly, the similarity-based
isA relation described in Section 3 can be directly translated into
subClassOf(ρ(C′CS) ρ(CCS) ).

Same individual
In a conceptual space the notion of identity is supervened on sim-
ilarity defined as a function of distance. Two instances that are
defined by the same points are considered as identical instances
because their semantic distance is 0. Given that there might be
errors in the observation measurements one can define a rule for
mapping instances to a SameIndividual(ρ(i1) ρ(i2)) axiom if
d(i1, i2, w) < α, where α is a fixed constant error threshold.

Combining reified classes with OWL-defined assertions
Using the mountain example from previous sections one can see
how a BritishMountain CS concept can be reified into a :British-
Mountain class using a property restriction derived from the height
dimension. However, British mountains also have the property
restriction of being on the island of Great Britain, which can be
easily represented using a object property restriction in OWL. The
:BritishMountain class therefore is described as an intersection of
the reified class and additional restrictions. When calculating the
semantic similarity of the :BritishMountain class to another rep-
resentation of mountain, not only can the semantic similarity rea-
soner rely on feature-based similarity using subsumption relation-
ships but also for those properties with a conceptual space prove-
nance it can use a more refined similarity measure based on dis-
tances within the conceptual space.

6. CONCLUSION
In this paper, we propose a methodology to derive context-specific
geo-ontologies by reifying geometric representations; i.e., points
and regions in a conceptual space. In contrast to related work, we
do not argue for the introduction of more expressive description
logics which comes at the price of increased worst-case complex-
ity or loss of decidability [4], but for an architectural solution. Fol-
lowing Sheth et al. [46], knowledge representation on the Semantic
(Geospatial) Web should not be restricted to description logics only.
Instead, we propose conceptual spaces as an additional layer dur-
ing ontology engineering that is closer to numerical models used
for classification in the geosciences. Depending on the application
area, these geometric representations are reified using a similarity-
based class constructor and context dependent thresholds to plain
OWL classes. Scholars interested in exchanging data on the cate-
gory level can track down how these classes were constructed and
uncover incompatibilities that are not visible on the class level.



This approach has a number of benefits. First, it affords not only
the standard Semantic Web connectives such as intersection, union,
and complement but also more complex combinations based on
geometric and topological operations. Second, the geometric rep-
resentation allows one to describe graded categories that are con-
structed based on similarity to a prototypical exemplar of the cat-
egory, which has direct relevance to ranking in semantic search.
Third, it creates a direct bridge to the myriad machine learning cat-
egorization algorithms based on similarity measures. Following
ideas from conceptual space theory, we impose a structure (with
respect to convexity, domains, and integral versus separable dimen-
sions) that allows for automated logical inferences about semantics
based on the configurations of the regions in the spaces. Finally, the
resulting geo-ontologies can be expressed in smaller OWL 2 pro-
files, e.g., EL++, compared to approaches that propose to move
uncertainty and vagueness into the immediate representation lan-
guage. Successful large-scale ontologies from the life sciences,
such as GALEN, demonstrate that in many cases expressivity is
not the main concern [41]. Constructing ontologies as reifications
of observation data is also crucial for ontology personalization. In
context of mobile computing and location-based services, our ap-
proach can be extended to construct ontologies to go, i.e., automat-
ically calibrate class definitions to the current location of the user.

Besides GIScience, there are several application areas that would
benefit from the ability to describe classes in ontologies using a
geometric approach. Two examples are multimedia and the Sen-
sor Web. In the first case, classification is often based on low-level
features that are closely grounded to perception (e.g., shape, color,
and texture). A common method used by the machine learning and
computer vision is to represent prototypical exemplars of classes of
these types as points in a multi-dimensional feature space [33]. The
Semantic Sensor Web aims to represent the semantics of aggregate
patterns derived from observations distributed over a geographical
space [47]. Often these data take the form of a time series and
classification algorithms compare individual observations to a pro-
totypical exemplar using a distance metric. In both cases properties
of individuals are more naturally represented as vectors of quality
values than symbolic relations.

While we have applied similarity measures and conceptual spaces
to various use cases in previous work, the reification framework has
to be separately evaluated with domain experts in the near future.
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