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Abstract Recent years have witnessed a rapid increase in Question Answering
(QA) research and products in both academic and industry. However, geographic
question answering remained nearly untouched although geographic questions ac-
count for a substantial part of daily communication. Compared to general QA sys-
tems, geographic QA has its own uniqueness, one of which can be seen during the
process of handling unanswerable questions. Since users typically focus on the ge-
ographic constraints when they ask questions, if the question is unanswerable based
on the knowledge base used by a QA system, users should be provided with a re-
laxed query which takes distance decay into account during the query relaxation and
rewriting process. In this work, we present a spatially explicit translational knowl-
edge graph embedding model called TransGeo which utilizes an edge-weighted
PageRank and sampling strategy to encode the distance decay into the embedding
model training process. This embedding model is further applied to relax and rewrite
unanswerable geographic questions. We carry out two evaluation tasks: link pre-
diction as well as query relaxation/rewriting for an approximate answer prediction
task. A geographic knowledge graph training/testing dataset, DB18, as well as an
unanswerable geographic query dataset, GeoUQ, are constructed. Compared to four
other baseline models, our TransGeo model shows substantial advantages in both
tasks.
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1 Introduction

In the field of natural language processing, Question Answering (QA) refers to the
methods, processes, and systems which allow users to ask questions in the form of
natural language sentences and receive one or more answers, often in the form of
sentences (Laurent et al. 2006). In the past decades, researchers from both academia
and industry have been competing to provide better models for various subtasks of
QA. Nowadays, many commercial QA systems are widely used in our daily life
such as Apple Siri and Amazon Alexa.

Although QA systems have been studied and developed for a long time, geo-
graphic question answering remained nearly untouched. Although geographic ques-
tions account for a large part of the query sets in several QA datasets and are fre-
quently used as illustrative examples (Yih et al. 2016, Liang et al. 2017), they are
treated equally to other questions even though geographic questions are fundamen-
tally different in several ways. First, many geographic questions are highly context-
dependent and subjective. Although some geographic questions can be answered
objectively and context independently such as what is the location of the Califor-
nia Science Center, the answers to many geographic questions vary according to
when and where these questions are asked, and who asks them. Examples include
nightclubs near me that are 18+ (location-dependent), how expensive is a ride from
Stanford University to Googleplex (time-dependent), and how safe is Isla Vista (sub-
jective). Second, another characteristic of geographic questions is that the answers
are typically derived from a sequence of spatial operations rather than extracted
from a piece of unstructured text or retrieved from Knowledge Graphs (KG) which
are the normal procedures for current QA systems. For example, the answer to the
question what is the shortest route from California Science Center to LAX should
be computed by a shortest path algorithm on a route dataset rather than searching
in a text corpus. The third difference is that geographic questions are often affected
by vagueness and uncertainty at the conceptual level (Bennett et al. 2008), thereby
making questions such as how many lakes are there in Michigan difficult to answer.1.

Due to the previously mentioned reasons, it is likely to receive no answer given a
geographic question. In the field of general QA such cases are handled by so-called
(query) relaxation and rewriting techniques (Elbassuoni et al. 2011). We believe
that geographic questions will benefit from spatially-explicit relaxation methods in
which the spatial adjacency and time continuity should be taken into account during
relaxation and rewriting. Interestingly, only a few researchers have been working
on geographic question answering (Chen et al. 2013, Pulla et al. 2013, Scheider
et al. 2018). In this paper, we will mainly focus on how to include spatial adjacency
(distance decay effect) into the geographic query relaxation/rewriting framework.

The necessity of query relaxation/rewriting arises from the problem of unan-
swerable questions (Rajpurkar et al. 2018). Almost all QA systems answer a given
question based on their internal knowledge bases (KB). According to the nature of
such knowledge bases, current QA research can be classified into three categories:

1 Where the answer can vary between 63,000 and 10 depending on the conceptualization of Lake.
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unstructured data-based QA (Rajpurkar et al. 2016, Miller et al. 2016, Yang et al.
2017, Chen et al. 2017, Mai, Janowicz, He, Liu & Lao 2018), semi-structure table-
based QA (Pasupat & Liang 2015), and structured-KB-based QA (so-called seman-
tic parsing) (Yih et al. 2016, Liang et al. 2017, Berant et al. 2013, Liang et al. 2018,
Yih et al. 2016). If the answer to a given question cannot be retrieved from these
sources, this question will be called an unanswerable question. There are differ-
ent reasons for unanswerable questions. The first reason is that the information this
question focuses on is missing from the current KB. For example, if the question
is what is the weather like in Creston, California (Question A) and if the weather
information of Creston is missing in the current KB, the QA system will fail to an-
swer it. Another reason may stem from logical inconsistencies of a given question.
The question which city spans Texas and Colorado (Question B) is unanswerable
no matter which KBs is used because these states are disjoint.

In order to handle these cases, the initial questions need to be relaxed or rewrit-
ten to answerable questions and spatial adjacency need to be considered in this pro-
cess. A relaxed question to Question A can be what is the weather like in San Luis
Obispo County because Creston is part of San Luis Obispo County. Another option
is to rewrite Question A to a similar question: what is the weather like in San Luis
Obispo (City) because San Luis Obispo is near to Creston. Which option to consider
depends on the nature of the given geographic question. As for Question B, a relax-
ation solution would be to delete one of the contradictory conditions. Sensible query
relaxation/rewriting should be based on both the similarity/relatedness among geo-
graphic entities (the distance decay effect) and the nature of the question. However,
current relaxation/rewriting techniques (Elbassuoni et al. 2011, Fokou et al. 2017,
Wang et al. 2018) do not consider spatial adjacency when handling unanswerable
questions, and, thus, often return surprising and counter-intuitive results.

The research contributions of our work are as follows:

1. We propose a spatially explicit knowledge graph embedding model, TransGeo,
which explicitly models the distance decay effect.

2. This spatially explicit embedding model is utilized to relax/rewrite unanswerable
geographic queries. To the best of our knowledge, we are the first to consider the
spatial adjacency between geographic entities in this process.

3. We present a benchmark dataset to evaluate the performance of the unanswerable
geographic question handling framework. The evaluation results show that our
spatially explicit embedding model outperforms non-spatial models.

The remainder of this work is structured as follows. In Sec. 2, several works
about unanswerable question handling are discussed. Next, we present our spatially
explicit KG embedding model, TransGeo, and show how to use this model to do
unanswerable geographic question relaxation/rewriting in Sec. 3. Then, in Sec. 4
we empirically evaluate TransGeo against 4 other baseline models in two tasks:
link predication task, unanswerable geographic question relaxation/rewriting and
approximate answer prediction task. Then we conclude our work in Sec. 5 and point
out the future research directions.
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2 Related Work

The unanswerable question problem was recently prominently featured in the open
domain question answering research field by Rajpurkar et al. (2018). The authors
constructs a benchmark dataset, SQuADRUn, by combining the existing Stanford
Question Answering Dataset (SQuAD) with over 50,000 unanswerable questions.
These new unanswerable questions are adversarially written by crowd-workers to
look similar to the original answerable questions. In their paper, the unanswerable
questions are used as negative samples to train a better QA model to discriminate
unanswerable questions from answerable ones. In our work, we assume the question
has already been parsed (e.g. to a SPARQL query) by a semantic parser and resulted
in an empty answer set. The task is to relax or rewrite this question/SPARQL query
and to generate a related query with its corresponding answer. In the Semantic Web
field, SPARQL query relaxation aims to reformulate queries with too few or even
no results such that the intention of the original query is preserved while a sufficient
number of potential answers are generated (Elbassuoni et al. 2011).

Query relaxation models can be classified into four categories: similarity-based,
rule-based, user-preference-based, and cooperative techniques-based models. Elbas-
suoni et al. (2011) proposed a similarity-based SPARQL query relaxation method
by defining a similarity metric on entities in a knowledge graph. The similarity met-
ric are defined based on a statistic language model over the context of entities. The
relaxed queries are then generated and ranked based on this metric. This query re-
laxation method is defined purely based on the similarity between SPARQL queries.
In contrast, our model jointly considers the similarity between queries and the prob-
ability that a selected answer to the relaxed query is, indeed, the answer to original
query. This is possible due to the so-called Open World Assumption (OWA) com-
monly used by Web-scale KG by which statements/triples missing from the knowl-
edge graph can still be true unless they are explicitly declared to be false within
the knowledge graph. Our model aims at relaxing or rewriting a query such that the
top ranked rewritten queries are more likely to generate the correct answer to the
original one if it would be known.

With the increasing popularity of machine learning models in question answer-
ing and the Semantic Web, knowledge graph embedding models have been used to
either predict answers for failed SPARQL queries (Hamilton et al. 2018) or recom-
mend similar queries (Zhang et al. 2018, Wang et al. 2018). KG embedding models
aim to learn distributional representations for components of a knowledge graph.
Entities are usually represented as continuous vectors while relations, i.e., object
properties, are typically represented as vectors (such as in TransE (Bordes et al.
2013), TransH (Wang et al. 2014), and TransRW (Mai, Janowicz & Yan 2018)), ma-
trices (e.g. TransR (Lin et al. 2015)), or tensors. For a comprehensive explanation
of different KG embedding models, readers are referred to a recent survey by Wang
et al. (2017).

Hamilton et al. (2018) proposes a graph query embeddings model (GQEs) to pre-
dict answers for conjunctive graph queries in incomplete knowledge graphs. GQEs
first embeds graph nodes (entities) in a low-dimensional space and represents logical
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operators as learned geometric operations (e.g., translation, rotation) in the embed-
ding space. Based on the learned node embeddings and geometric operations, each
conjunctive graph query can be converted into an embedding in a same embedding
space. Then cosine similarity is used to compare the query embeddings and node
embeddings, and subsequently rank the corresponding entities as potential answers
to the current query. While GQEs have been successfully applied to representing
conjunctive graph queries and entities in the same embedding space, they have some
limitations. For instance, GQEs can only handle conjunctive graph queries, a subset
of SPARQL queries. Additionally, the predicted answer to a conjunctive graph query
is not associated with a relaxed/rewritten query as an explanation for the answer.

Wang et al. (2018) proposed an entity context preserving translational KG em-
bedding model to represent each entity as a low-dimensional embedding and each
predicate as a translation operation between entities. The authors show that com-
pared with TransE (Bordes et al. 2013), the most popular and straightforward KG
embedding model, their embedding model performs better in terms of approximat-
ing answers to empty answer SPARQL queries. They also present an algorithm to
compute similar queries to the original SPARQL queries based on the approximated
answers. Our work is developed based on this work by overcoming some limitations
and including distance decay in the embedding model training process.

3 Method

Before introducing our spatially explicit KG embedding model, we briefly outline
concepts relevant to our work.

Definition 1 Knowledge Graph: A knowledge graph (KG) is a data repository,
which is typically organized as a directed multi-relational graph. Let G = 〈E,R〉
be a knowledge graph where E is a set of entities (nodes) and R is a set of relations
(labeled edges). A triple Ti = (hi, ri, ti) can be interpreted as an edge connecting the
head entity hi (subject) with the tail entity ti (object) by relation ri (predicate). 2

Definition 2 Entity Context: Given an entity e ∈ E in the knowledge graph G, the
context of e is defined as C(e) = {(rc, ec)|(e, rc, ec) ∈ G ∨ (ec, rc, e) ∈ G}.

Definition 3 Basic Graph Pattern (BGP): Let V be a set of query variables in a
SPARQL query (e.g., ?place). A basic graph pattern in a SPARQL query is a set of
triple patterns (si, pi, oi) where si, oi ∈ E ∪ V and pi ∈ R. Put differently, we restrict
triple patterns and thus BGP to cases where the variables are in the subject or object
position.

2 Note that in many knowledge graphs, a triple can include a datatype property as the relation
where the tail is a literal. In our work, we do not consider these kind of triple as they are not used
in any major current KG embedding model. We will use head (h), relation (r), and tail(t) when
discussing embeddings and subject (s), predicate (p), object (o) when discussing Semantic Web
knowledge graphs to stay in line with the literature from both fields.



6 G. Mai et al.

Definition 4 SPARQL select query: For the purpose of this work, a SPARQL select3

query Q j is defined as the form: Q j = SELECT V j FROM KG WHERE GP where
V j ⊆ V and KG is the studied knowledge graph and GP is a BGP.

The SPARQL query 1 shows an example which corresponds to the natural lan-
guage question: In which computer hardware company located in Cupertino is/was
Steve Jobs a board member. The answer should be dbr:Apple_Inc. If the triple
(dbr:Apple_Inc,dbo:locationCity,dbr:Cupertino,_California), how-
ever, is missing from current KG, this question would become an unanswerable
geographic question. Compared to the full SPARQL 1.1 language standard, two
limitations of the given definition of a SPARQL query should be clarified:

1. Predicates in a SPARQL 1.1 BGP can also be a variables. Hence, Def. 3 presents
a subset of all triple patterns, which can appear in a standard SPARQL query.

2. SPARQL 1.1 also contains other operations (UNION, OPTION, FILTER, LIMIT,
etc.) not considered here and in related state-of-the-art work (Wang et al. 2018,
Hamilton et al. 2018) .

SELECT ?v
WHERE {
?v dbo:locationCity dbr:Cupertino ,_California .
?v dbo:industry dbr:Computer_hardware .
dbr:Steve_Jobs dbo:board ?v .}

Listing 1: An example SPARQL query generated by a semantic parser.

Given a SPARQL query Q j parsed from a natural language geographic question,
if executing Q j on the current KG yields an empty answer set, our goal is: 1) learn a
spatially explicit KG embedding model for the current KG which takes distance de-
cay into account; 2) use the embedding model to infer a ranked list of approximated
answers to this question; and 3) generate a relaxed/related SPARQL query for each
approximate answer as an explanation for the query relaxation/rewriting process.

3.1 Modeling Geographic Entity Context in Knowledge Graphs

Based on the examples about relaxing or rewriting Question A and Question B in the
introduction, we observe that a suitable query relaxation/rewriting for an unanswer-
able geographic question should consider both the similarity/relatedness among ge-
ographic entities (e.g., the distance decay effect) as well as the nature of the question.
In terms of measuring semantic similarities among (geographic) entities in a knowl-
edge graph, we borrow the assumption of distributional semantics from computa-
tional linguistic that you shall know a word by the company it keeps (Firth 1957). In
analogy, the semantic similarity among (geographic) entities can be measured based
on their contexts (Yan et al. 2017).

3 We ignore ASK, CONSTRUCT, and DESCRIBE queries here as they are not typically used for ques-
tion answering, and, thus, also not considered in related work.
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With regards to measuring the similarity/relatedness between general entities in a
knowledge graph, both Elbassuoni et al. (2011) and Wang et al. (2018) consider the
one degree neighborhood of the current entity as its context, which is shown in Def.
2. However, this entity context modeling falls apart when geographic entities
are considered in two ways. First, this geographic entity context modeling does
not fully reflect Tobler’s first law of geography, which indicates that near things are
more related than distant things. Since Def. 2 only considers object property triples
as the entity context and disregard all datatype properties, all positional informa-
tion, e.g., geographic coordinates, would not be considered in the context modeling.
Although the place hierarchy is encoded as object property triples in most KG, e.g.,
GeoNames, GNIS-LD, and DBpedia, and these triples can also indirectly introduce
distance decay effects into the context modeling, such contextual information is far
too coarse. For example, Santa Barbara County, Los Angeles County, and Hum-
boldt County are all subdivisions of California. From a place hierarchy perspective,
all three should have the same relatedness to each other. But Santa Barbara County
is more related to Los Angeles County rather than Humboldt County.

The second reason is due to the way geographic knowledge is represented in
Web-scale knowledge graphs. For any given populated place, the place hierar-
chy of administrative units is modeled using the same canonical predicates. Put
differently, even if no other triples are known about a small settlement, the KG
will still contain at least a triple about a higher-order unit the place belongs to,
e.g., a county. Consequently, all populated places in, say, Coconino County, Ari-
zona, will share a common predicate (e.g., dbo: isPartOf) and object (e.g.,
dbr:Coconino County, Arizona) . For tiny deserted settlements such as Two
Guns, AZ this may also be the sole triple known about them. In contrast, major
cities in the same county or state, e.g., Flagstaff, will only have a small percentage
of their total object property triples be about geographic statements. This will result
in places about which not much is known to have an artificially increased similarity.

These aforementioned two reasons demonstrate the necessity to model geo-
graphic entity context in a different way rather than Def. 2. In this work, we redefine
Def. 2 by combing an edge-weighted PageRank and a sampling procedure. The un-
derlying idea is to assign larger weights to geographic triples in an entity context
where the weights are modeled from a distance decay function.

To provide a final and illustrative example of the problems that arise form em-
bedding models that are not spatially explicit, consider the work by Wang et al.
(2018). Their query example is which actor is born in New York and starred in a
United States drama film directed by Time Burton. After passing the SPARQL ver-
sion of this question to their query relaxation/rewriting model, the model suggests
to change the birthplace from New York to Kentucky which is certainly a surprising
relaxation from the original query. Although Kentucky is also a place as New York,
it is too far away from the brithplace, New York, the QA system user is interested
in. A more reasonable relaxed/rewritten query should replace New York City with
its nearby places, e.g. New Jersey.
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3.2 Spatially Explicit KG Embedding Model

Given a knowledge graph G = 〈E,R〉, a set of geographic entities P ⊆ E, and a
triple Ti = (hi, ri, ti) ∈ G, we treat G as an undirected, unlabeled, edge-weighted
multigraph MG, which means that we ignore the direction and label (predicate) for
each triple in G. The weight w(Ti) for triple Ti is defined in Equ. 1, where D is the
longest (simplified) earth surface distance which is half of the length of the equator
measured in kilometer; dis(hi, ti) is the geodesic distance between geographic entity
hi and ti on the surface of an ellipsoidal model of the earth measured in kilometer.
The ε is a hyperparameter to handle the cases where hi and ti are collocated; and l is
the lowest edge weight we allow for each triple. If the head place and tail place of a
geographic triple are too far apart, we set its weight as the lower bound l, indicating
that we do not expect strong spatial interaction at this distance. 4

w(Ti) =

max(ln D
dis(hi,ti)+ε

, l) if hi ∈ P ∧ ti ∈ P
l otherwise

(1)

The location of hi and ti are represented as their geographic coordinates stored
in a knowledge graph, which are usually points. In this work, we use the geo:
geometry property to get the coordinates of all geographic entities in DBpedia.

After we compute weights for each triple in MG, an edge-weighted PageRank is
applied to this weighted multigraph, where edge weights are treated as the transi-
tion probability of the random walker from one entity node to its neighboring entity
node. In order to prevent the random walker to get stuck at one sinking node, the
PageRank algorithm also defines a teleport probability, which allows the random
walker to jump to a random node in MG with a certain probability at each time step.
Let PR(ei) be the PageRank score for each entity ei in the knowledge graph, then
PR(ei) ∈ (0, 1) represents the probability of a random walker to arrive at entity ei

after n time steps. If ei had a lot of one degree triples (i.e., |C(ei)| is large), then ei

would have a larger PR(ei). Since
∑

i PR(ei) = 1 and |C(ei)| have a long tail distri-
bution, PR(ei) will also have a long tail distribution with few very large values but
many small values. This skewed distribution would affect the later sampling process.
In order to normalize PR(ei), we apply a damping function (Equ. 2). In Equ. 2, ln is
the natural log function; N is the number of entities in the knowledge graph G. This
function has the nice property that w(ei) increases monotonically w.r.t. PR(ei) and
the distribution of w(ei) is more normalized than w(ei). Therefore, w(ei) encodes the
structural information of the original knowledge graph and the distance decay effect
on interaction (and similarity/relatedness more broadly) among geographic entities.
The more incoming and outgoing triples one entity ei has, the larger its w(ei) will
be. Also, the closer two geographic entities ei, e j ∈ P are, the larger w(ei) and w(e j)
would be.

4 We leave the fact that interaction depends on the travel mode and related issues for further work.
Similarity, due to the nature of existing knowledge graphs, we use point data to represent places
despite the problems this may introduce. Work on effectively integrating linestrings, polygons, and
topology into Web-scale knowledge graphs is ongoing (Regalia et al. 2017).
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w(ei) = N ·
1

− ln PR(ei)∑
i

1
− ln PR(ei)

(2)

Next, we introduce the knowledge graph embedding model, which utilizes w(ei)
as the distribution from which the entity context is sampled. Since w(ei) directly en-
codes the distance decay information among geographic entities, we call our model
spatially explicit KG embedding model, denoted here as TransGeo.

Translation-based KG embedding models embed entities into low-dimensional
vector spaces while relations are treated as translation operations in either the
original embedding space (TransE) or relation-specific embedding space (TransH,
TransR). This geometric interpretation provides us with a useful way to understand
the embedding-based query relaxation/rewritten process.

Fig. 1 shows the basic graph pattern of Query 1 and their vector representations
in KG embedding space. If triple (dbr:Apple_Inc,dbo:locationCity,dbr:
Cupertino,_California) is missing from the current KG, this query becomes
an unanswerable query. However, if we already obtained the learned embeddings
for e1, e2, e3, r1, r2, and r3, we could compute the embedding of the query variable
?v with each triple pattern. Next, we can compute the weighted average of these em-
beddings to get the final embedding of ?v, which is denoted as v. Next, the k-nearest
neighbor entities of v can be obtained based on the cosine similarity between their
embeddings. These k-nearest neighbor entities are treated as approximated answers
to the original query 1. Based on each of these candidate answers, we cycle through
each triple pattern in the original Query 1 to see whether they need to be relaxed or
not, which is the major procedure for embedding-based query relaxation/rewritten.

e1

Cupertino, California

e2

Computer Hardware

v1 

location city

r1

industry
r2

board r3

Empty Answer

e3 

Steve Jobs

Incomplete knowledge graph yields an empty answer Relaxation in the embedding space

e1

e4

v1 

r1

r3

r2e2 

e3 

Cupertino, CaliforniaCalifornia

e5 
Apple Inc.

r1

Fig. 1: An unanswerable geographic query example and its corresponding KG em-
bedding

In order to make the embedding-based query relaxation/rewriting process work
well, the KG embedding model should be an entity context preserving model. How-
ever, one problem for the original TransE model is that each triple is treated indepen-
dently in the training process which does not guarantee its context preservation. In-
spired by the Continuous-Bag-of-word (CBOW) word embedding model (Mikolov
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et al. 2013), Wang et al. (2018) proposed an entity context preserved KG embedding
model which predicts the center entity based on the entity context (Def. 2). However,
as we discussed in Sec. 3.1, the geographic entity context can not be fully captured
by using Def. 2 and we need another method to capture the distance decay effect,
where w(ei) plays a role. Another shortcoming of the embedding model proposed
in Wang et al. (2018) is that the size of entity context |C(ei)| varies among different
entities which will make the number of triples trained in each batch different. This
will have a negative effect on the model optimization process. Some entities may
have thousands of incoming and outgoing triples, e.g., dbr:United_States has
232,573 context triples. This will imply that the model parameters will only update
once all these triples are processed which is not a good optimization technique.

Based on this observation, we define a hyperparameter d as the context sampling
size for each entity. If |C(ei)| > d, then the context C(ei) of entity ei would not
be fully used in each KG embedding training step. Instead, the training context
Csamp(ei) is sampled from C(ei) (Csamp(ei) ⊆ C(ei)) while the sampling probability
of each context item (rci, eci) is calculated based on the damped PageRank value
w(eci). If |C(ei)| > d, the training context Csamp(ei) is sampled without replacement.
If |C(ei)| < d, Csamp(ei) is sampled with replacement. After a certain number of
epochs t f req, Csamp(ei) will be resampled for each entity. Because of this sampling
strategy, a context item (rci, eci) of ei would have a higher chance to be sampled if
ei ∈ P ∧ eci ∈ P, and ei is close enough to eci in geographic space.

P(rci, eci) =
w(eci)∑

(rc j,ec j)∈C(ei) w(ec j)
, where (ei, rci, eci) ∈ G ∨ (eci, rci, ei) ∈ G (3)

Based on the definition of entity training context Csamp(ei), a compatibility score
between Csamp(ei) and an arbitrary entity ek can be computed as Equ. 4, in which
φ(ek, rc j, ec j) is the plausibility score function between (rc j, ec j) and ek. In Equ. 5,
‖ · ‖ represents the L1-norm of the embedding vector; ek, ecj represent the KG em-
beddings for the corresponding entity ek, ec j, and rcj is the relation embedding of
rc j.

f (ek,Csamp(ei)) =
1

|Csamp(ei)|
·

∑
(rc j,ec j)∈Csamp(ei)

φ(ek, rc j, ec j) (4)

φ(ek, rc j, ec j) =

‖ek + rcj − ecj‖ if (ei, rc j, ec j) ∈ G
‖ecj + rcj − ek‖ if (ec j, rc j, ei) ∈ G

(5)

The same assumption has been used here as TransE, which is that, in the perfect
situation, if (hi, ri, ti) ∈ G, ‖hi + ri − , ti‖ = 0. Based on Equ. 4 and 5, if ek = ei, each
φ(ek, rc j, ec j) would be small and close to zero, thus f (ei,Csamp(ei)) would be also
small and close to zero. In contrast, if C(ek) ∩ C(ei) = �, each φ(ek, rc j, ec j) would
be very large and f (ei,Csamp(ei)) would also also large.

In order to set up the learning task, the pairwise ranking loss function has been
used as the objective function like most KG embedding models do. Specifically, for
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each entity ei, we randomly sample K entities as the negative sampling set Neg(ei)
for ei. Equ. 6 shows the objective function of TransGeo, where γ is the margin and
max() is the maximum function.

L =
∑

ei∈G

∑
e′i ∈Neg(ei)

max
(
γ + f (ei,Csamp(ei)) − f (e

′

i ,Csamp(ei)), 0
)

(6)

3.3 KG Embedding Model Based Query Relaxation and Rewriting

After obtaining the learned TransGeomodel, we adopt the same procedure as Wang
et al. (2018) to relax/rewrite the query. We briefly summarize the process below. We
assume a SPARQL query Q with two variables ?v1 and ?v2, which are targets to be
relaxed/rewritten in order to find approximated answers.

1. Given an empty answer SPARQL query Q, we partition the basic graph pattern
into several groups such that all triple patterns in one group only contain one
variable. Triples who have two variables ?v1 and ?v2 (connected triples) as its
subject and object respectively are treated differently;

2. For each triple pattern group which contains variable ?v, the embedding of ?v is
first computed by each triple pattern based on the translation operations from the
entity node to the variable node. Then the final embedding of ?v is computed as
the weighted average of previous computed variable embeddings. The weight is
calculated based on the number of matched triples of each triple patterns in the
KG;

3. If Q has any connection triples, the embeddings of variables computed from each
triple pattern group are refined based on the predicate of the connection edges.
Then these embeddings will be treated as the final embeddings for each variable;

4. The approximate answers to each variable are determined by using their com-
puted variable embeddings to search for the k-nearest embeddings of entities
based on their cosine similarity. Each variable will have a ranked list of entities,
e.g. A(?v1), A(?v2), as their approximated answers;

5. If Q has any connection triples, e.g. (?v1, r, ?v2), we need to first use beam search
to get top-K answer tuples for ?v1 and ?v2. And then each answer tuple (e1i, e2 j)
is checked for the condition (e1i, r, e2 j) ∈ G. The answer tuples which satisfy this
condition will be returned as a ranking list Ans(Q) of approximated answers;

6. For each answer tuple (e1i, e2 j) ∈ Ans(Q), we enumerate each triple pattern to
check the satisfaction. As for triple (?v1, r, e), if (e1i, r, e) ∈ G, we do not perform
any relaxation. If (e1i, r, e) < G, then (?v1, r, e) will be relaxed based on Equ. 7.
However, if e1i does not have any outgoing triples, this triple pattern could not be
relaxed and we would delete this triple pattern from the query relaxation/rewrit-
ing result. But the similarity score of this relaxation result will be set to 0;

7. The ranked list of answer tuples as well as the relaxed queries associated with
them are returned to the users.
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(e1i, rk, ek) = arg max
( r · rk

‖r‖ · ‖rk‖
+

e · ek

‖e‖ · ‖ek‖

)
(7)

4 Experiment

Since almost all the established knowledge graph training dataset for KG embedding
models, e.g., FB15K, WN18, do not contain enough geographic entities, we collect
a new KG embedding training dataset, DB185, which is a subgraph of DBpedia. The
dataset construction procedure is as follow: 1) We first selected all geographic en-
tities which are part of (dbo:isPartOf) dbr:California with type (rdf:type)
dbo:City which yields 462 geographic entities; 2) We use these entities as seeds
to get their 1-degree and 2-degree object property triples and filter out triples with
no dbo: properties; 3) we delete the entities and their associated triples whose node
degree is less than 10; 4) we split the triple set into training and testing set and
make sure that every entity and relation in the testing dataset will appear in training
dataset. The statistic of DB18 is listed in Tab. 1. ‘Geographic entities’ here means
entities with a geo:geometry property.

Table 1: Summary statistic for DB18

DB18 Total Training Testing
# of triples 139155 138155 1000
# of entities 22061 - -
# of relations 281 - -
# of geographic entities 1681 (7.62%) - -

Following the method we describe in Sec. 3.2, we compute the edge weights
for each triple in DB18 and an edge-weighted PageRank algorithm is applied on
this undirected unlabeled multigraph. Here we set l to 1 and ε to 1. We select four
models as the baseline models to compare with TransGeo: 1) TransE; 2) the context
preserving translational KG embedding (Wang et al. 2018); 3) a simplified version
of TransGeo in which the entity context items are randomly sampled from a uni-
form distribution, denoted as TransGeounweighted; 4) another simplified version of
our model in which the PageRank are applied to unweighted multigraph, denoted as
TransGeoregular. We implement TransE, TransGeounweighted, TransGeoregular, and
TransGeo, in Tensorflow. We use the original Java implementation of (Wang et al.
2018)6. For all five models, we train them for 1000 epochs with the margin γ = 1.0
and learning rate α = 0.001. As for TransGeounweighted, TransGeoregular, and Trans-
Geo, we use 30 as the entity context sampling size d and 1000 as batch size. We
resample the entity context every 100 epochs. As for the context preserving transla-

5 https://github.com/gengchenmai/TransGeo
6 https://github.com/wangmengsd/re
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tional KG embedding (Wang et al. 2018), we use 10 as the entity context size cut-off

value. The embedding dimension of all these five embedding models is 50.
In order to demonstrate the effectiveness of our spatially explicit KG embed-

ding model, TransGeo, over the other four baseline models, we evaluate these five
KG embedding models in two task: the standard link predication task and an relax-
ation/rewriting task to predict answers to the otherwise unanswerable geographic
questions. The evaluation results are listed in Tab. 2.

The common link prediction task is used to validate the translation preserv-
ing characteristic of different models. The set up of the link prediction task fol-
lows the evaluation protocol of Bordes et al. (2013). Given a correct triple Tk =

(hk, rk, tk) from the testing dataset of DB18, we replace the head entity hk (or tail
tk) with all other entities from the dictionary of DB18. The plausibility scores for
each of those n triples are computed based on the plausibility score functions of
TransE (‖ h + r − t ‖). Then these triples are ranked in ascending order accord-
ing to this score. The higher the correct triple ranks in this list, the better this
learned model. Note that some of the corrupted triples may also appear in the KG.
For example, as for triple (dbr:Santa_Barbara,_California, dbo:isPartOf,
dbr:California), if we replace the head dbr:Santa_Barbara,_California
with dbr:San_Francisco, the result corrupted triple (dbr:San_Francisco, dbo:
isPartOf, dbr:California) is still in the DBpedia KG. These false negative sam-
ples need to be filtered out. Mean reciprocal rank (MRR) and HIT@10 are used as
evaluation matrics where Raw and Filter indicate the evaluation results on the orig-
inal ranking of triples or the filtered list which filters out the false negative samples.
According to Tab. 2, TransGeo performs the best in most of the metrics and the
only metric TransGeo cannot outperform is MRR in the raw setting. This evaluation
shows that our spatially explicit model does indeed hold the translation preserving
characteristic.

Table 2: Two evaluation tasks for different KG embedding models

Link Prediction SPARQL Relaxation
MRR HIT@10 MRR HIT@10

Raw Filter Raw Filter
TransE Model 0.122 0.149 30.00% 34.00% 0.008 5% (1 out of 20)

Wang et al. (2018) 0.113 0.154 27.20% 30.50% 0.000 0% (0 out of 20)
TransGeoregular 0.094 0.129 28.50% 33.40% 0.098 25% (5 out of 20)

TransGeounweighted 0.108 0.152 30.80% 37.80% 0.043 15% (3 out of 20)
TransGeo 0.104 0.159 32.40% 42.10% 0.109 30% (6 out of 20)

For the quality of the unanswerable geographic query relaxation/rewriting re-
sults, we evaluate the results based on the ranking of the approximate answers
(Hamilton et al. 2018). Let’s take Question 1 as an example. One reason which
causes an empty answer is that some triples were missing from the KG, e.g., (dbr:
Apple_Inc,dbo:locationCity,dbr:Cupertino,_California), and the cur-
rent SPARQL query is overly restrictive. However, based on the KG embedding
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model, we can approximate the embeddings of the variables in the current query.
This variable embeddings can be used to search for the most probable answers/en-
tities to each variable in the embedding space. These k-nearest entities are assumed
to be more probable to be the correct answer of the original question. The correct
answer (based on the Open World Assumption) to Question 1 is dbr:Apple_Inc.
If the KG embedding is good at preserving the context of entities, the embedding of
dbr:Apple_Inc will appear close to the computed variable embedding (See Fig.
1). So the performance of the query relaxation/rewriting algorithm can be evalu-
ated by checking the rank of the correct answer in the returned ranking list of the
approximate answers.

Based on the above discussion, we construct another evaluation dataset, GeoUQ,
which is composed of 20 unanswerable geographic questions. Let Gtrain be a knowl-
edge graph which is composed of all the training triples of DB187 and Gall be a
knowledge graph containing all training and testing triples in DB188. Both Gtrain

and Gall can be accessed through the SPARQL endpoint. These queries satisfy 2
conditions: 1) each query Q will yield empty answer set when executing Q on Gtrain;
2) Q will return only one answer when executing Q on Gall. The reason for making
Q a one-answer query in Gall is that the user also expects one answer from the QA
system to the question (s)he poses. One-answer queries are also the common setup
for many QA benchmark datasets, e.g. WikiMovie (Miller et al. 2016), WebQues-
tionsSP (Yih et al. 2016). MRR and HIT@10 are used as evaluation metrics for this
task.

All five KG embedding models are evaluated based on the same query relax-
ation/rewriting implementation. The evaluation results are shown in Tab. 2. From
Tab. 2, we can conclude that TransGeo outperform all the other baselines models
both on MRR and HIT@10.

Tab. 4 show the top 3 query relaxation/rewriting results of Question 1 from all
the 5 KG embedding models. For each query, the highlighted part in the BGP is
the part where the query is changed from the original Query 1. Note that some of
the relaxation/rewriting results have less triple patterns than the original Query 1.
This is because the current approximate answer/entity does not have any outgoing
or incoming triples to be set as the alternative to the original triple pattern. Hence,
we delete this triple pattern. This has been described in Step 6 in Sec. 3.3. From
Tab. 4, we can see that the correct answer dbr:Apple_Inc has been listed as the
second approximate answer for TransGeo. However, all the 4 baseline models fail
to predict this correct answer in their top 10 approximate answers list. Besides the
perspective of predicting the correct answers, we can also evaluate the models by in-
specting the quality of the relaxed/rewritten queries. For example, the top 1 relaxed
query from TransGeo changes dbr:Cupertino,_California to dbr:Redwood_
City,_California which is a nearby city of dbr:Cupertino,_California.
Although the predicted answer is dbr:NeXT rather than dbe:Apple_Inc, this query
relaxation/rewriting makes sense and is meaningful for the user. The 2nd relaxed re-
sult from TransGeo changes dbr:Cupertino,_California to dbr:California

7
http://stko-testing.geog.ucsb.edu:3080/dataset.html?tab=query&ds=/GeoQA-Train

8
http://stko-testing.geog.ucsb.edu:3080/dataset.html?tab=query&ds=/GeoQA-All
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which is a superdivision of dbr:Cupertino,_California. This is indeed a real
query relaxation which relaxes the geographic constraint to its superdivision. In
short, our spatially explicit KG embedding model, TransGeo, produces better result
than all baseline models.

5 Conclusion

In this work, we discussed why geographic question answering differs from general
QA in general, and what this implies for relaxation and rewriting of empty queries
specifically. We demonstrated why distance decay has to be included explicitly in
the training of knowledge graph embeddings and showed cases of neglecting to
do so. As a result, we propose a spatially explicit KG embedding models, Trans-
Geo, which utilizes an edge-weighted PageRank and sampling strategy to include
the distance decay effect into the KG embedding model training. We constructed
a geographic knowledge graph training dataset, DB18 and evaluated TransGeo as
well as four baseline models. We also created an unanswerable geographic question
dataset (GeoUQ) for two evaluation tasks: link prediction and answer prediction
by relaxation/rewriting. Empirical experiments show that our spatially explicit em-
bedding model, TransGeo, can outperform all the other 4 baseline methods on both
task. As for the link prediction task, in the filter setting, our model outperforms the
other baselines by at least 3.2% at MRR and 11.4% at HIT@10. In terms of the
unanswerable geographic question approximate answer prediction task, our model
outperform the other 4 baselines by at least 11.2% at MRR and 20% at HIT@10.

In terms of future work, firstly, the distance decay information is explicitly en-
coded into our KG embedding model which gives up on flexibility, e. g., to model
modes of transportation. In the future, we want to explore ways to only consider dis-
tance decay during query relaxation rather than the model training step. Secondly, as
for the method to compute the edge weights of the knowledge graph, we used point
geometries which may yield misleading results for larger geographic areas such as
states. This limitation is due to the availability of existing knowledge graphs. Work
to support more complex geometries and topology is under way.
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Table 3: Query relaxation/rewriting results of different KG embedding models for
Query 1
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