Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result

A High-order Statistical Approach to Understand Urban Structures

Rui Zhu

STKO Lab Department of Geography University of California, Santa Barbara

LocBigData 2019: July 15, Tokyo, Japan

Urban Structures in High Order

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
●00		000	0	0
Location-	based Big Data			

ヘロト 人間 とくほとくほとう

₹ 9Q@

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
○●○		000	O	0
From Spa	atial to Platial			

- Location-based big data allow us to model human perceptions of places
- The order of platial analysis increases:
 - Spatial, temporal, thematic and emotional perspectives
 - High-order interactions

.≣⇒

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000		000	0	0
Beyond Pa	iirs			

Due to the **significant heterogeneity** and **complex dependence** of places, **high-order spatial interactions** have to be considered in platial analysis.

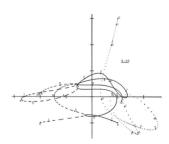
• Geo-dipole (Goodchild et al., 2007)

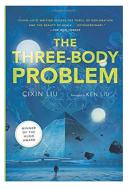
< x, x', Z, z(x, x') >

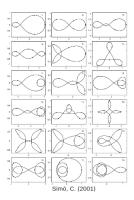
• Geo-multipole (Zhu et al., 2017):

 $\langle x, t_N, Z, z(x, t_N) \rangle$ where $t_N = \{x_1, ..., x_N\}$ are the N neighbors of x

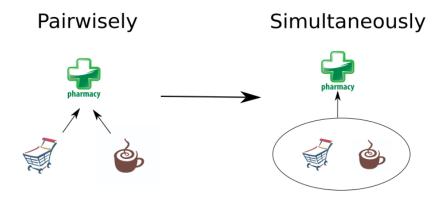
Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000	●000	000	O	0
The Thr	ee-bodv Problem	ו		







・ロト・日本・日本・日本・日本・日本



< ∃⇒

э

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000	00●0	000	O	0
Pairwise	Independence \neq	Global	Independe	nce

- Two independent random indicators: x₁ and x₂, each could be either 1 or 0 with probability p
- The third indicator $x_3 = x_1 x_2$
- x₃ is determined by both x₁ and x₂ but not by either of them individually
- Even worse, x_1 and x_2 are often not independent as well

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000	000●	000	O	0
High-order	Spatial Interac	tion		

- Therefore, the interaction between x₃ and (x₁, x₂) should be modeled through a **trivariate** statistics
- However, most traditional spatial statistics are bivariate

.⊒...>

Introduction High-order Interaction Method Data Hypothesis & Expected Result High-order Conditional Probability

• Derived from the extended normal equation:

$$p(x_0 = 1 | x_i, i = 1, \cdots, n) = \lambda_0 + \sum_{i_1=1}^n \lambda_{i_1}^{(1)} p(x_{i_1}) + \sum_{i_1=1}^n \sum_{i_2 > i_1}^n \lambda_{i_1 i_2}^{(2)} p(x_{i_1} x_{i_2}) + \sum_{i_1=1}^n \sum_{i_2 > i_1}^n \sum_{i_3 > i_2}^n \lambda_{i_1 i_2 i_3}^{(3)} p(x_{i_1} x_{i_2} x_{i_3}) + \dots + \lambda^{(n)} p(\prod_{i=1}^n x_i)$$

where the indicator x_i is defined as:

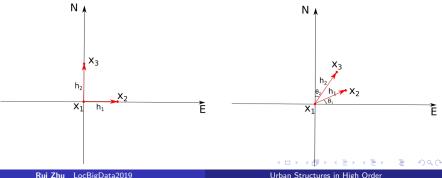
$$x_i = \begin{cases} 1, \text{ if location } i \text{ has feature type } t \\ 0, \text{ otherwise} \end{cases}$$

ヨト イヨト

э

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000		○●○	O	0
High-order	[·] Stationarity			

- Approximate the equation to the order of three
- Second-order stationarity: based on the **displacement** h'
- High-order stationarity: based on the shape comprised of more than two locations
- Examples of third-order shape:

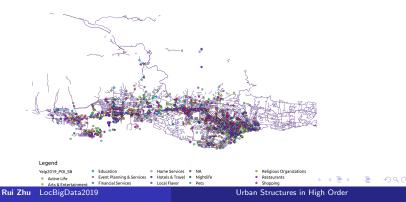


Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000		○○●	O	0
Workflow				

- Use the shape to scan the data
- Find data events that fit the shape
- Solution The parameters (i.e., λ) are estimated using either least square estimation or Legendre polynomial approximation
- The high order conditional probability is inferred using the extended normal equation

Introduction	High-order Interaction	Method	Data	Hypothesis & Expected Result
000		000	●	0
Experime	ntal Data			

- We focus on modeling interaction of place types
- **Points of Interests** (22 root place types) from Foursquare are collected in three cities:
 - Santa Barbara
 - Washington D.C.
 - Las Vegas



- Places in urban cities are too complex to be modeled through the traditional second-order statistics, and by applying our proposed approach, rather complicated platial patterns could be extracted and characterized
- The proposed high-order spatial statistics are capable of addressing multiple challenges in location-based big data:
 - to compare spatial patterns between cities
 - to predict/suggest place types for a new data entry
 - to align typing schema for different data sources
 - to clean crowdsourced data