Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion

Are Streets Indicative of Place Types?

Rui Zhu¹, Grant McKenzie², Krzysztof Janowicz¹

¹STKO Lab Department of Geographt UC Santa Barbara ²Platial Lab Department of Geography McGill University

GeoCultGIS 2019: June 17, Limassol, Cyprus

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
●0000	O	0000	000000	O	0	0
Place-base	ed GIS					

- Beyond metric information about locations or geometries
- Interaction with human:
 - capacity, atmosphere, accessibility, reviews, opening hours, prices of services, and products they offer,
 - moods, opinions, and experiences

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
0●000	0	0000	000000	O	0	0
Place Typ	es					

Place types are best understood as **proxies** for a wide range of **latent characteristics** that we do not typically model explicitly in an information system. Examples:

- Fire stations are located to maximize the coverage
- Book stores are found in quiet communities
- Bars are usually closed during daytime
- People are more likely to discuss about arts, history, and culture in a *museum*

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	000000	O	0	0
Semantic	Signat	ures				

- The set of **thematic**, **temporal**, and **spatial** bands that uniquely characterize place types
- Spatial signatures: to use **spatial structures and interactions** to characterize the semantics of place types

< ⊒ >

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
	o	0000	000000	O	0	0
Spatial Si	ignatu	ires				

Zhu et. al (2016) proposed a set of statistics to characterize the spatial structures and interactions of geographic information (e.g., point of interests) from different perspectives.

Spati	al Point Pattern	Spatial Autocorrelations	Spat with Other	ial Interaction Geographic Features	Place-base	d statistics
	Intensity			min	Number	of distinct
	Mean distance to				states (or	counties)
	nearest neighbor		Population	max		
Local	std. of distance to nearest neighbor	Global Moran's I		mean	Entri states (or	opy of counties)
Loca	Kernel density (range)			std.	Number o	f adjacent
	Kernel density (bandwidth)			min of shortest distance	that h	ave the
	Ripley's K (range)		Road Network	max of shortest distance	same jec	ture type
	Ripley's K (mean deviation)			mean of shortest distance	Number	of distinct
	std. ellipse (rotation)	Semivariogram		std. of shortest distance	nearest	neighbor
	std. ellipse (std. along x-axis)	(first distance lag)		entropy of nearest road types	Entropy	of feature
	std. ellipse (std. along y-axis)			mean precipitation	nearest	s for neighbor
	Intervite	Ø		std. precipitation		Mean KL
	Intensity	(median distance loa)	Climate	mean	1	of the tonic
Global		(meaning assumed may)		temperature max	LDA-based	distribution
010014				std.	approach	
				temperature max		
	Kernel density			mean		
	(ranae)			temperature min		
	(std.		Entropy of
		Semivariogram		temperature min		the tonic
	Kernel density	(last distance lag)		mean water		distribution
	(bandwidth)			vapor pressure		
				std. water		
				vapor pressure		

Street2Place

Spatial	Interact	tion with	Streets			
Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
0000●	O	0000	000000	O	0	0

- **Research question**: are streets indicative of places? (Note: places refer to POIs in our work)
- **Hypothesis**: the type of a place is implicitly embedded in its interaction with a street network given that the relationship between places and streets differs based on the **properties** and **affordances** of the place type

Road networks, book stores and car dealers in Maryland, USA

- Study region: the State of Maryland, USA
- Road network: Maryland Road Centerlines dataset¹, which contains about **4816 street centerlines** for all public roadways in Maryland
- Point of Interest (POI) datasets

Dataset	Number of POIs	Number of place types
Google Places ²	38354	99
Foursquare Venues ³	132429	403

¹ http://data.imap.maryland.gov/dat	asets/
² https://cloud.google.com/maps-pla	tform/places/
³ https://developer.foursquare.com/	< □ > < 副 > < 필 > < 필 > < 필 > 三 の Q (
GeoCultGIS2019	Street2Place

Street_ha	sed Si	natial Sid	matures			
Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	0	●000	000000	O	0	0

Two types of spatial signatures are introduced:

- Proximity to closest street
 - Example: natural reserves vs restaurants
 - Statistics: min, max, mean, std
- Suffix to closest street
 - Example: bakery vs car dealer
 - statistics: entropy, Jensen Shannon Divergence (JSD)

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0●00	000000	O	0	0
Street S	uffix					

Street2Place

00000	0	0000	000000	0	0	0
Proximity	to Cl	osest Sti	reet			

For each place of a place type, we compute the **shortest distance to the road network**. Then we have a distribution of shortest distance for each place type.

• Example statistics: mean shortest distance of a place type

$$s^{proximity} = rac{\sum_{j=1}^{N} d_j}{N}$$

where N is the number of places of a specific place type

• Examples:

Place Types	Distance to Closest Street (in meters)						
Trace Types	Min	Max	Mean	Std			
restaurant	0.01	15084.88	503.29	785.35			
natural feature	8.90	14881.89	1423.70	2172.93			
stadium	15.20	1870.40	468.42	387.72			

 Introduction
 Data
 Method
 Experiments
 Conclusion
 Disussion
 Disussion

 Suffix of Closest Street

Thanks to its **cultural implication**, street suffix embeds **latent characteristics**, such as the width, the importance, and the neighborhood of streets.

- **14 suffix types** in the data: e.g., roads (RD), turnpikes (PIKE), avenues (AVE), boulevards (BLVD), streets (ST), parkways (PKWY), connectors (CONNECTOR), circles (CIR), and lanes (LA)
- Suffix type distribution:

• Entropy and Jensen Shannon divergence (JSD) are used to quantify and compare the distributions

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion			
00000	O	0000	•00000	O	0	0			
Overview	Overview of Experiments								

We test the proposed signatures by:

- Exploring the relation of place types within one dataset, i.e., Google Places
- Aligning place types **across datasets**, i.e., Google Places and Foursquare Venues

 $\equiv \rightarrow$

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	00000	O	0	0
Exploratio	on in Go	oogle Pla	ices			

- 5 statitistics: **min, max, mean** and **std** of distances to the closest street, and the **entropy** of street suffix
- Multidimensional scaling (MDS) to transfer the 5-dimension space into a 2-dimension map
- The relation/relatedness of place types is reflected by their pairwise distance in the 2-dimension map

Introduction 00000	Data O		Method 0000		Experiments 00●000	Conclusion O	Disussion 0	Disussion 0
		~		D.				

Exploration in Google Places

A ID > A (P) > A

→ 프 ▶ - 프

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	000●00	O	0	0
Place Ty	pe Alig	nment				

- We use the **suffix distribution of the closest street** to align place types between Google Places and Foursquare Venues
- Jensen Shannon divergence (JSD) is used to compare the suffix distribution pairwise

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	0000€0	O	O	0
Place Ty	pe Ali	gnment				

• Examples: pairwise JSD is ranked for each place type

Place Type in	Top 5 Match in Foursquare Venues								
Google Places	1	2 3		4	5				
amusement park	theme park	bike rental bike share	motel	lounge	market				
hospital	medical center	salon barbershop	miscellaneous	drugstore pharmacy	laundry service				
post office	fire station	city	bridge	flower shop	brewery				

Street2Place

▶ ★ 臣 ▶ …

Ξ.

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	00000●	O	0	0
Place Typ	be Alig	nment				

• Comparison of hospital from Google Places with hospital and medical center from Foursquare Venues

프 🕨 🖉 프

Street2Place

GeoCultGIS2019

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	000000	•	O	0
Conclusio	ns					

- **Street-based spatial signatures** were introduced to quantify the semantics of place types
- Two types of interactions, **proximity to** and **suffix of the closest street**, were explored
- Experiments, both within one dataset and across different datasets, showed the potential of characterizing place types using the interaction with streets

Introduction	Data	Method	Experiments	Conclusion	Disussion	Disussion
00000	O	0000	000000	O	•	0
Discussion	n and F	uture W	ork			

- More sophisticated models will be applied to understand the interaction between places and streets
- Street-based signatures will be combined with other semantic signatures to address geospatial challenges such as coreference resolution, open geospatial data cleaning, and place disambiguation
- We plan to apply the approach across different cities and countries as a new means to compare and understand the culture implication of places

医外球菌科 一

GeoCultGIS2019

Street2Place