Method 000000000000000 Experiment 0000 Conclusion

Relaxing Unanswerable Geographic Questions Using A Spatially Explicit Knowledge Graph Embedding Model

Gengchen Mai, Bo Yan, Krzysztof Janowicz, Rui Zhu

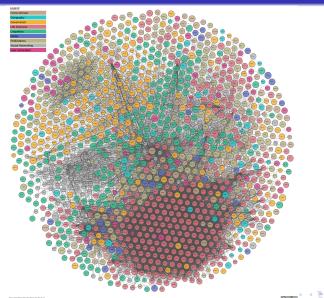
STKO Lab, Department of Geography University of California, Santa Barbara

AGILE 2019: June 20, Limassol, Cyprus

Gengchen Mai, Bo Yan, Krzysztof Janowicz, Rui Zhu (UCSB)

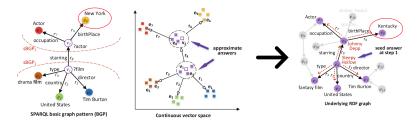
Unanswerable Geographic Questions

0000000	0000000000	0000	00
Question Answ	<i>l</i> ering		


• Question answering (QA) refers to the methods, process, and systems which allow users to ask questions in the form of natural language sentences and receive one or more answers, often in the form of sentences.

Introduction	Method	Experiment	Conclusion
0000000	0000000000	0000	00
OA Using K	nowledge Graph		

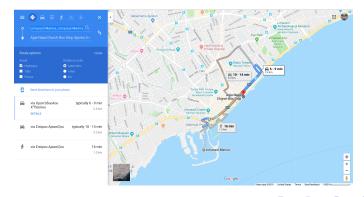
- "Knowledge graphs are **large networks** of entities, their semantic types, properties, and relationships between them" (M. Kroetsch and G. Weikum, 2016)
- The graph structure provides **rich contexts** for entities in a knowledge graph
- Most state-of-the-art QA systems are using knowledge graphs
 - E.g., Google Assistant, Apple Siri, Amazon Alexa


Gengchen Mai, Bo Yan, Krzysztof Janowicz, Rui Zhu (UCSB)

Introduction	Method	Experiment	Conclusion
0000000	00000000000	0000	00
Unanswerah	ole Questions		

- Due to **missing information** and **logical inconsistency**, it is likely to receive **no answer** for questions given a knowledge graph
- This challenge is commonly handeled by **query** relaxation/rewriting based on knowledge graph embedding
- Examples:
 - What is the weather like in Agios Athanasios? (missing information)
 - After relaxation: What is the weather like in Limassol?
 - Which city spans Texas and Colorado? (logical inconsistency)
 - After rewriting: Which city locates in Texas?

• What is the American drama films directed by Tim Burton, one of whose star actors was born in New York?



M. Wang et al., 2018

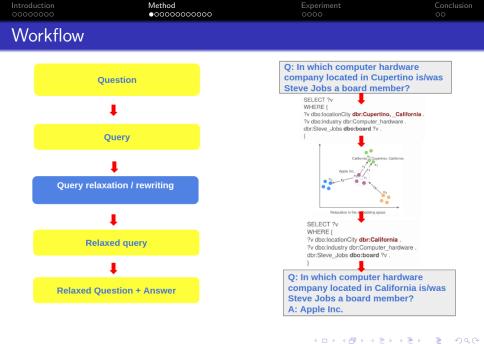
• Note: each (head(h), relation(r), tail(t)) in the graph is a triple

Introduction	Method	Experiment	Conclusion
00000000	ooooooooooo	0000	00
Geographic Ques	tion Answering		

- Geographic question answering refers to those questions that involve geographic information
 - Example: How long will it take to travel from Limassol Marina to the Ayia Napa church?

Introduction	Method	Experiment	Conclusion
00000000	೦೦೦೦೦೦೦೦೦೦೦	0000	00
Spatial Is Specia	d -		

Geographic question answering is **fundamentally different** from general question answering:

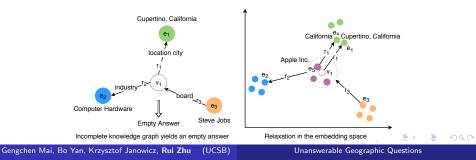

- Context-dependent
 - Find the nightclubs near me that is open now and is 18+.
- Spatial operations
 - What is the **shortest path** from the Pefkos City hotel to Tassos Papadopoulos building of CUT?
- Vagueness and uncertainty
 - How many lakes are there in Cyprus?

Introduction	Method	Experiment	Conclusion
0000000●	೦೦೦೦೦೦೦೦೦೦	0000	00
Spatial Is Spe	cial		

Even more fundamental research questions:

- How could we incorporate spatial information into the question answering systems?
- Will such spatial information help to improve the geographic question answering?

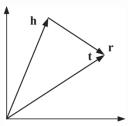
▶ < ∃ >



Gengchen Mai, Bo Yan, Krzysztof Janowicz, Rui Zhu (UCSB)

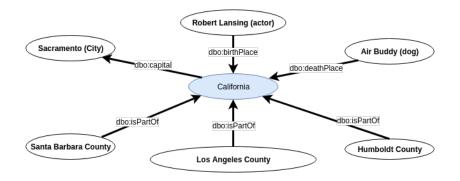
Unanswerable Geographic Questions

0000000	0000000000	0000	00
Introduction	Method	Experiment	Conclusion


- Core Ideas
 - Transform the knowledge graph entities into an **embedding space** considering:
 - Graph structures
 - Domain knowledge (e.g., spatial information)
 - **Relax/rewrite** the unanswerable query based on the similarity of entity embedding
 - Example: In which computer hardware company located in Cupertino is/was Steve Jobs a board member?

Knowledge Graph Embedding

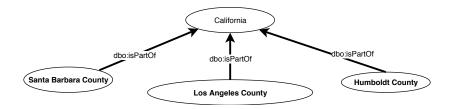
- TransE: a translation-based KG embedding model
- Entities are embedded into a low-dimensional vector space, while relations are treated as translation operations in the same space


Entity and Relation Space

• In a perfect situation, if $(h, r, t) \in G$, $\|\mathbf{h} + \mathbf{r} - \mathbf{t}\| = 0$

 Example: (*Limassol*, *is_located*, *Cyprus*) ∈ G || limassol + is_located - cyprus ||= 0

• Entity context modeling: all 1 degree neighbors of the target entity are considered equally as its context


▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

Introduction	Method	Experiment	Conclusion
00000000	oooo●ooooooo	0000	00
Limitation (of State of the Art		

• Distance effect is not considered

• Example: Santa Barbara County is closer to Los Angeles County compared to Humboldt County

Gengchen Mai, Bo Yan, Krzysztof Janowicz, Rui Zhu (UCSB)

Unanswerable Geographic Questions

▶ ★ 臣 ▶ …

э

• **TransGeo**: to assign **larger weights** to geographical triples in an entity context, and these weights are modeled using a **distance decay function**

▶ < Ξ >

	eights for Triples	0000	00
Introduction	Method 000000	Experiment	Conclusion

Given a KG G = ⟨E, R⟩, a set of geographic entities P ⊆ E, and a triple T_i = (h_i, r_i, t_i) ∈ G

$$w(T_i) = \begin{cases} \max(\ln \frac{D}{dis(h_i, t_i) + \varepsilon}, I) & \text{if } h_i \in P \land t_i \in P \\ I & \text{otherwise} \end{cases}$$

- dis(h_i, t_i) is the geodesic distance between geographic entity h_i and t_i
- I is the lowest edge weight we allow for each triple
- D is the longest (simplified) earth surface distance
- ε is a hyperparameter

ъ

• The weight for each entity in the **edge-weighted** knowledge graph is modeled as:

$$w(e_i) = N \cdot \frac{\frac{1}{-\ln PR(e_i)}}{\sum_i \frac{1}{-\ln PR(e_i)}}$$

- *PR*(*e_i*) is the **edge weighted PageRank score** for each entity *e_i*, which is computed using the **weights of triples**
- *PR*(*e_i*) represents the **probability of a random walker to arrive at entity** *e_i* after *n* time steps
- N is the number of entities in G
- $w(e_i)$ encodes the structural information of the KG and the spatial information among geographic entities.

Introduction 0000000			Method 0000000●000			Experime 0000		Conclusion 00
	~	~	~		<u> </u>	_		

TransGeo: Context Sampling & Loss Function

• For each entity e_i in G, we sample an entity context C_{samp}(e_i) ⊆ C(e_i) where the sampling probability P(r_{ci}, e_{ci}) of each context item (r_{ci}, e_{ci}) ∈ C(e_i) is based on the entity weight w(e_{ci})

$$P(r_{ci}, e_{ci}) = \frac{w(e_{ci})}{\sum_{(r_{cj}, e_{cj}) \in C(e_i)} w(e_{cj})}$$

where $(e_i, r_{ci}, e_{ci}) \in G \lor (e_{ci}, r_{ci}, e_i) \in G$

 An incompatibility score between C_{samp}(e_i) and an arbitrary entity e_k can be computed as:

$$f(e_k, C_{samp}(e_i)) = \frac{1}{|C_{samp}(e_i)|} \cdot \sum_{\substack{(r_{cj}, e_{cj}) \in C_{samp}(e_i)}} \phi(e_k, r_{cj}, e_{cj})$$
$$\phi(e_k, r_{cj}, e_{cj}) = \begin{cases} \|\mathbf{e_k} + \mathbf{r_{cj}} - \mathbf{e_{cj}}\| & \text{if } (e_i, r_{cj}, e_{cj}) \in G \\ \|\mathbf{e_{cj}} + \mathbf{r_{cj}} - \mathbf{e_k}\| & \text{if } (e_{cj}, r_{cj}, e_i) \in G \end{cases}$$

Pairwise ranking loss function:

$$\mathcal{L} = \sum_{e_i \in G} \sum_{e'_i \in Neg(e_i)} max \Big(\gamma + f(e_i, C_{samp}(e_i)) - f(e'_i, C_{samp}(e_i)), 0 \Big)$$

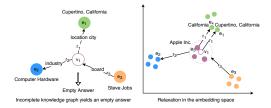
Introduction 0000000	Method ooooooooooooo	Experiment 0000	Conclusion 00
Interpretatio	n of the Incompatil	bility Score	
	Robert Lansing (actor)		
Sacramento (City)	ibo:capital dbo:birthPlace Air Bu california	uddy (dog)	
dbo:is	PartOf dbo:isPartOf dbo:isPartOf		
Santa Barbara County	Los Angeles County	oldt County	
		Robert Lansing (actor)	

Unanswerable Geographic Questions

≺≣≯

æ

P


Introduction	Method	Experiment	Conclusion
00000000	ooooooooooooooo	0000	00
TransGeo			

- After training the neural network using the proposed **context sampling** and **loss function**, we have the vector-based embedding for each entity
- This learned embedding encodes both the graph structural information and spatial information
- We then use the learned embedding to relax/rewrite queries

Introduction	Method	Experiment	Conclusion
00000000	0000000000●	0000	00

Query Relaxation/Rewriting

Recall: In which computer hardware company located in Cupertino is/was Steve Jobs a board member?

- Use $\textbf{v}_i = \textbf{e}_i + \textbf{r}_i$ to predict variable embedding \textbf{v}_i from each triple path
- \bullet Compute the final variable embedding v as weighted average of v_i
- Use **nearest neighbor search** in entity embedding space to get the approximate answer
- Use the approximate answer to relax/rewrite_the original

Introduction	Method	Experiment	Conclusion
00000000	೦೦೦೦೦೦೦೦೦೦	●000	00
DB18 for Tra	ining		

• We collected a new KG embedding training dataset, *DB18*¹, which is a subgraph of DBpedia.

Table: Summary statistic for DB18

DB18	Total	Training	Testing
# of triples	139155	138155	1000
# of entities	22061	-	-
# of relations	281	-	-
# of geographic entities	1681 (7.62%)	-	-

¹https://github.com/gengchenmai/TransGeo < -> < ->

Gengchen Mai, Bo Yan, Krzysztof Janowicz, Rui Zhu (UCSB)

Unanswerable Geographic Questions

医下 利益下

э

Introduction	Method	Experiment	Conclusion		
00000000	00000000000	0●00	00		
GeoUQ for Evaluation					

- We constructed an evaluation dataset, GeoUQ, which is composed of **20 unanswerable geographic questions** based on *DB18*.
- These queries satisfy 2 conditions:
 - each query yields empty answer set when executing it on the training KG;
 - each query returns **only one answer** when executing it on the **whole KG**

Introduction	Method	Experiment	Conclusion
00000000	೦೦೦೦೦೦೦೦೦೦	00●0	00
Evaluation			

- Link prediction: Given *h*, *r*, to predict the correct *t*
- Answer prediction by relaxation/rewriting: The rank of the correct answer in the queried answer ranking list

Table: Two evaluation tasks for different KG embedding models

	Link Prediction			Q	uery Relaxation	
	M	RR	HIT@10		MRR	HIT@10
	Raw	Filter	Raw	Filter		
TransE Model	0.122	0.149	30.00%	34.00%	0.008	5% (1 out of 20)
Wang et al. (2018)	0.113	0.154	27.20%	30.50%	0.000	0% (0 out of 20)
TransGeo _{regular}	0.094	0.129	28.50%	33.40%	0.098	25% (5 out of 20)
TransGeo _{unweighted}	0.108	0.152	30.80%	37.80%	0.043	15% (3 out of 20)
TransGeo	0.104	0.159	32.40%	42.10%	0.109	30% (6 out of 20)

Introduction	Method	Experiment	Conclusion
00000000	೦೦೦೦೦೦೦೦೦೦	000●	00
Example			

Recall: In which computer hardware company located in Cupertino is/was Steve Jobs a board member?

ed Query by TransGeo:
T?v
Ε {
locationCity dbr:California .
industry dbr:Computer_hardware .
ve_Jobs dbo:board ?v .
r: dbr:Apple_Inc

Introduction	Method	Experiment	Conclusion
00000000	೦೦೦೦೦೦೦೦೦೦	0000	●0
Conclusion			

- We propose a **spatially explicit KG embedding models**, **TransGeo**, which incorporates the **spatial information** into the KG embedding
- We show the use of TransGeo to relax/rewrite geographic queries
- Our spatially-explicit model outperforms other baseline models in both **link prediction** and **query relaxation/rewriting**
- Our code and collected data are **open sourced** for other researchers to **reproduce** our experiments

Introduction	Method	Experiment	Conclusion
00000000	೦೦೦೦೦೦೦೦೦೦೦	0000	⊙●
Future Work			

- In the future, **complex geometries** and **topology** will be considered
- We will explore ways to design an **end-to-end** model for query answering prediction
- More **complex spatial interactions** other than distance decay can be incorporated into the model
- We plan to investigate the encoding of **temporal information** into KG embedding models