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Spatial Patterns

o Types of spatial patterns

Spatial Point Pattern Spatial Areal Pattern Spatial Field Pattern Spatial Network Pattern
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@ How to quantify spatial pattern?

@ First-order or environmental effects: is the attribute mean
stationary across the domain?

@ e.g., local intensity and local mean of the attribute value.

@ Second-order or interaction effects: is there any correlation
between locations?

@ e.g., spatial association
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Second-order Interactions

How to model spatial interactions?

@ Single distance class:

o Geary's C
oo (VD35 wilX — X))
237,07 wi > (X — X)?
e Moran's |
| N E,ij;j(X,-—fi)(Xj—X)

N Z;Zj Wjj (X = X)?

@ Multiple distance classes:
e Semivariance

L)
7= iy DX (s + )~ X(s)F
i=1



Introduction
[e]e] Yolole}

Sencod-order Interactions

Are these second-order statistics robust enough to analyze all
spatial patterns?

@ In some cases, they are:

+ Blue line: north-south direction
+ Red line: west-east direction
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Second-order Interactions

Are these second-order statistics robust enough to analyze all
spatial patterns?
@ In some cases, they are not:

proportion of blue pixels = 0.28
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Second-order Interactions

What are the reasons that make the second-order interaction
(e.g.,semivariogram) fail?
@ The interaction between location A and location B may be
dependent on a third, or even more nearby location(s) C.
@ Spatial patterns may sometimes have evident geometrical
properties.
Therefore, models that could quantify higher-order interactions
are needed!
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Higher-order Interactions

e What it is (conceptualization): interactions among multiple
(i.e., more than two) locations are modeled simultaneously.
@ How to model it:

e Similar to variograms, use the sample data to model the
spatial pattern. However, the size of sample data sets is
typically small for such multiple-point inference;

o Multiple-Point (Geo)Statistics: The training image is
applied as an analogue, or more generally a prior model of the
target pattern; then a template is used for modeling the
higher-order interactions (statistics).
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Geographic Conceptualization

Goodchild et al., (1999, 2007)'s general theory of geographic
representation in GIS:
o Geo-atom:
<x,Z,z(x) >

where a spatial location x is associated with an attribute
feature Z via the function mapping z(x).
o Geo-dipole:
<x,x',Z,z(x,x") >

where the interaction of variables between two locations x and
x' is described via the two-point mapping z(x, x').
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Geo-multipole

Following Goodchild's geo-dipole < x, X', Z, z(x, x") >, we pro-
pose a generalized conceptualization for modeling spatial inter-
actions:

Geo-multipole: (x,ty, Z, z(x, ty))
where ty = {x1,..,xy} are the N neighbors of x.
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Geo-multipole

Both the geo-atom and geo-dipole could be described by the
geo-multipole:

@ When ty is empty, the geo-multipole equals to the geo-atom,
which is a single-point data model,

e When ty = {x'}, the geo-multipole equals to the geo-dipole,
which is a two-points data model;

@ The most generalized version of geo-multipole, where
ty = {x1,.., xn}, is a multiple-points data model.
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Geo-dipole VS. Geo-multipole

The key difference between the geo-dipole and the geo-multipole:

o Geo-dipole: interactions are considered in pairs under the
conceptualization of the geo-dipole despite that multiple
pairwise interactions could be combined in sequence;

@ Geo-multipole: locations x1, .., xy in ty are simultaneously
considered (along with the corresponding attribute values)
when modeling their interactions with x.

Mathematically, f(z(x, x1), ..., z(x, xy)) does not necessarily imply
z(x, th = {x1, ..y XN })-
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Statistical Perspectives

Geographic fields are frequently assumed to be generated from
stochastic processes, and are thus regarded as realizations of a
random field. Therefore, the generalized geo-multipole, with its
two special cases, are translated to their statistical perspectives
(i.e., modeled as probability density/mass functions).

e Single-point data model (i.e., geo-atom)
e Two-points data model (i.e., geo-dipole)
@ Multiple-points data model
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Statistical Perspective (Single-point Data Model)

Probability density function:

f(z,x) = prob(Z(x) =z £ ¢€)

@ Statistics:
e Continuous attributes: mean, standard deviation, quantiles ...
o Categorical attributes: mode, the proportion of one specific
category ...
@ Examples:
o Univariate (f(z,x)): could only be estimated by experts using
physical models or experience;
o Multivariate (f(z,z’,x) = prob(Z(x) = z|Z'(x))): linear and
non-linear models could be used for modeling the relation
between z and Z’ that are co-located at location x.
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Statistical Perspective (Two-points Data Model)

Probability density function:

f(z,x,Z(x")) = prob(Z(x) = z|Z(x"))

@ Statistics:
o Continuous attributes: semivariogram, cross-semivariogram ...
o Categorical attributes: indicator semivariogram, transition
probabilities ...
@ Examples:
o Univariate (f(z,x,Z(x))): interpolation (e.g., IDW, Kriging)

e Multivariate
(f(z,7,2(x"), Z'(x)) = prob(Z(x) = z|Z(x'), Z'(x))):
contextual classification with multi-spectral remotely sensed
images...
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Statistical Perspective (Multiple-points Data Model)

Probability density function:
f(z,x,Z(tn)) = prob(Z(x) = z|Z(tn))
@ Statistics: higher-order conditional probabilities ... — But,

how do we model it?

@ Examples: interpolation, classification and simulation...

18/33



Methods

Outline

© Multiple-Point (Geo)Statistics
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Building Blocks

e Training images (T/) that are assumed to contain the target
spatial patterns;

e Template (T) for scanning training images;

e Data events (dev(x)), which are simultaneous (joint)
combinations of attribute values at the template configuration.

Training Image Templates Data Events
L- . L
" =1
ol = n s
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Algorithms of Multipole-Point (Geo)Statistics

e Extended Normal Equations Simulation (ENESIM): Guardiano
and Srivastava (1993)

e Simple Normal Equation Simulation (SNESIM): Strebelle
(2002)

e Pattern-based Simulation (SIMPAT): Arpat (2005)
o Filter-based Simulation (FILTERSIM): Zhang et al. (2006)
@ Direct Sampling (DS): Mariethoz et al. (2010)

o Parallel Multiple-point algorithm using a list approach
(IMPALA): Straubhaar et al. (2011)
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Simple Normal Equation Simulation (SNESIM)

Step 1
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Step 2

© Scan the training image
using the template;

@ Store the data events in a
tree structure;
© Estimate the conditional
probability:
prob(z(x) = cltn) =

#(z(x)=ck|tn)

K, #(z()=ci|ty)
where ¢, is the k" class,
and ty = {x1,..,xn} are
the N neighbors of x
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Case Study

Do we really need the geo-multipole to model real world geo-
graphic field information?
@ Use two-point statistics and multiple-point statistics
respectively to:

o describe the spatial pattern;
e simulate the spatial pattern.

Image 1 Image 2 Image 3

aeas

Image 5

Remotely sensed images (1km) Binary spatial patterns (600-by-1000)
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Description of the Pattern

Variogram-based analysis:

025 Sample Variogram for W-E Direction 025 Sample Variogram for N-S Direction
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Directional semivariograms for the five patterns
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Description of the Pattern

MPS-based analysis: A data event's conditional probability
is calculated as the frequency of occurrence:

#(2(x) = Oltn)
#(z(x) = 0ftn) + #(2(x) = 1[tn)

P(x| ny, ..., ns)

prob(z(x) = 0|ty) =

Templates Data Events — Pattem 1 p““?L |
P(x=0] n, ..., na) | P(x=1| M, ..., ne)| P(x=0] s, ..., ne)| P(x=1] ny, ..., na)

0.000 1.000 0.600 0.400

0.600 0.400 0300

0500 0500 0.625 0375

2=
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0.530 0.470 0.458 0.542

0.610

0.513

Conditional multiple-point probabilities for patterns 1 and 4 26/33



Simulation of the Pattern

Variogram-based simulation: Unconditional moving average
simulation via the Fast Fourier Transform (FFT) was used; the
resulting continuous images were then thresholded using suit-
able cutoff values so as to reproduce the same proportion of
black pixels as the corresponding original binary images.

sfi'Tulatlnn using the fitted semivariogram (Pattern 1) Slmulatlan using the fitted semivaﬂonram (Pattern 4)
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Variogram-based simulations (pattern 1 and pattern 4)
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Simulation of the Pattern

MPS-based simulation: Unconditional SNESIM was used;
template was set to 80 x 80 squares.

400 600 800 1000

MPS-based simulations (pattern 1 and pattern 4)
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Observations

e Multiple-point (geo)statistics (MPS) could better distinguish
spatial patterns that are visually different compared to
variograms;

@ The two simulations using MPS show obviously different
patterns with pattern 1 showing more curvilinearity along the
west-east direction, and pattern 4 showing more polygonal
geometries;

@ The MPS-based simulations are more similar to the ones from
the original images compared to variogram-based simulation.

Therefore, the geo-multipole, specifically the MPS, indeed plays a
role in spatial analysis.
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Conclusions

Discussed motivations for higher-order interactions;

Proposed a generalized geographic conceptualization, with
higher-order interaction included;

@ Introduced an algorithm to model the higher-order
interactions;

@ Showed the strength of higher-order interaction in describing
and simulating spatial patterns using real world geographic
field information.
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Future Work

@ The application details of multiple-point (geo)statistics for
quantifying spatial patterns in geographic phenomena should
be further explored;

@ Contextual classification and spatial simulation using
higher-order interactions could be studied and improved;

@ Methods of modeling higher-order interactions for other
geographic information could be investigated.
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