Introduction	Conceptualization	Methods	Cases	Future

From the Geo-dipole to the Geo-multipole: A Framework of Applying Multiple-Point (Geo)Statistics for Geographic Field Analysis

Rui Zhu

STKO Lab, Department of Geography University of California, Santa Barbara

April, 2017; Boston

1/33

Outline				
Introduction	Conceptualization	Methods	Cases	Future

- 2 Geographic Conceptualization
- Multiple-Point (Geo)Statistics

Introduction	Conceptualization	Methods 000	Cases 0000000	Future 00
Outline				

- 2 Geographic Conceptualization
- 3 Multiple-Point (Geo)Statistics
- 4 Case Study
- 5 Future Work

Introduction	Conceptualization	Methods	Cases	Future
●00000	0000000	000	0000000	00
Spatial Pat	tterns			

• Types of spatial patterns

- How to quantify spatial pattern?
 - First-order or environmental effects: is the attribute mean stationary across the domain?
 - e.g., local intensity and local mean of the attribute value.
 - Second-order or interaction effects: is there any correlation between locations?
 - e.g., spatial association

 Introduction
 Conceptualization
 Methods
 Cases
 Future

 0<0000</td>
 000
 000
 000
 000
 000

 Second-order
 Interactions

How to model spatial interactions?

- Single distance class:
 - Geary's C

$$C = \frac{(N-1)\sum_{i}\sum_{j}\mathbf{w}_{ij}(X_{i}-X_{j})^{2}}{2\sum_{i}\sum_{j}\mathbf{w}_{ij}\sum_{i}(X_{i}-\bar{X})^{2}}$$

• Moran's I

$$I = \frac{N}{\sum_{i}\sum_{j} \mathbf{w}_{ij}} \frac{\sum_{i}\sum_{j} \mathbf{w}_{ij}(X_{i} - \bar{X})(X_{j} - \bar{X})}{\sum_{i}(X_{i} - \bar{X})^{2}}$$

- Ø Multiple distance classes:
 - Semivariance

$$\hat{\gamma} = \frac{1}{2N(\mathbf{h})} \sum_{i=1}^{N(\mathbf{h})} [X(s_i + \mathbf{h}) - X(s_i)]^2$$

5/33

Introduction	Conceptualization	Methods	Cases	Future
00●000		000	0000000	00
Sencod-order	Interactions			

Are these second-order statistics robust enough to analyze all spatial patterns?

• In some cases, they are:

Introduction	Conceptualization	Methods	Cases	Future
000000		000	0000000	00
Second-order	Interactions			

Are these second-order statistics robust enough to analyze all spatial patterns?

• In some cases, they are not:

proportion of blue pixels = 0.28

Second-order	Interactions			
Introduction	Conceptualization	Methods	Cases	Future
000000		000	0000000	00

What are the reasons that make the second-order interaction (e.g., semivariogram) fail?

- The interaction between location A and location B may be dependent on a third, or even more nearby location(s) C.
- Spatial patterns may sometimes have evident geometrical properties.

Therefore, models that could quantify **higher-order interactions** are needed!

Higher_order	Interactions			
Introduction	Conceptualization	Methods	Cases	Future
00000●		000	0000000	00

- What it is **(conceptualization)**: interactions among multiple (i.e., more than two) locations are modeled *simultaneously*.
- How to model it:
 - Similar to variograms, use the sample data to model the spatial pattern. However, the size of sample data sets is typically small for such multiple-point inference;
 - Multiple-Point (Geo)Statistics: The *training image* is applied as an analogue, or more generally a prior model of the target pattern; then a *template* is used for modeling the higher-order interactions (statistics).

Introduction	Conceptualization	Methods	Cases	Future
000000		000	0000000	00
Outline				

1 Introduction

2 Geographic Conceptualization

Multiple-Point (Geo)Statistics

4 Case Study

5 Future Work

Introduction	Conceptualization	Methods	Cases	Future
000000	••••••	000	0000000	00
Geographic (Conceptualization			

Goodchild et al., (1999, 2007)'s general theory of geographic representation in GIS:

• Geo-atom:

$$\langle x, Z, z(x) \rangle$$

where a spatial location x is associated with an attribute feature Z via the function mapping z(x).

• Geo-dipole:

where the interaction of variables between two locations x and x' is described via the two-point mapping z(x, x').

Introduction	Conceptualization	Methods	Cases	Future
000000	0000000	000	0000000	00
Geo-multipole	2			

Following Goodchild's geo-dipole $\langle x, x', Z, z(x, x') \rangle$, we propose a generalized conceptualization for modeling spatial interactions:

Geo-multipole: $\langle x, t_N, Z, z(x, t_N) \rangle$ where $t_N = \{x_1, ..., x_N\}$ are the *N* neighbors of *x*.

Introduction	Conceptualization	Methods	Cases	Future
000000	0000000	000	0000000	00
Geo-multipole	e			

Both the geo-atom and geo-dipole could be described by the geo-multipole:

- When *t_N* is empty, the geo-multipole equals to the geo-atom, which is a *single-point* data model;
- When $t_N = \{x'\}$, the geo-multipole equals to the geo-dipole, which is a *two-points* data model;

• The most generalized version of geo-multipole, where $t_N = \{x_1, ..., x_N\}$, is a *multiple-points* data model.

Introduction	Conceptualization	Methods	Cases	Future
000000	00000000	000	0000000	00
Geo-dipole V	S. Geo-multipole			

The key difference between the geo-dipole and the geo-multipole:

- **Geo-dipole**: interactions are considered in *pairs* under the conceptualization of the geo-dipole despite that multiple pairwise interactions could be combined in *sequence*;
- **Geo-multipole**: locations $x_1, ..., x_N$ in t_N are *simultaneously* considered (along with the corresponding attribute values) when modeling their interactions with x.

Mathematically, $f(z(x, x_1), ..., z(x, x_N))$ does not necessarily imply $z(x, t_n = \{x_1, ..., x_N\})$.

Introduction	Conceptualization	Methods	Cases	Future
000000		000	0000000	00
Statistical Pe	erspectives			

Geographic fields are frequently assumed to be generated from stochastic processes, and are thus regarded as realizations of a random field. Therefore, the generalized geo-multipole, with its two special cases, are translated to their statistical perspectives (i.e., modeled as probability density/mass functions).

- Single-point data model (i.e., geo-atom)
- Two-points data model (i.e., geo-dipole)
- Multiple-points data model

Probability density function:

$$f(z,x) = prob(Z(x) = z \pm \epsilon)$$

- Statistics:
 - Continuous attributes: mean, standard deviation, quantiles ...
 - Categorical attributes: mode, the proportion of one specific category ...
- Examples:
 - Univariate (*f*(*z*, *x*)): could only be estimated by experts using physical models or experience;
 - Multivariate (f(z, z', x) = prob(Z(x) = z|Z'(x))): linear and non-linear models could be used for modeling the relation between z and z' that are co-located at location x.

Probability density function:

$$f(z, x, Z(x')) = prob(Z(x) = z | Z(x'))$$

- Statistics:
 - Continuous attributes: semivariogram, cross-semivariogram ...
 - Categorical attributes: indicator semivariogram, transition probabilities ...
- Examples:
 - Univariate (f(z, x, Z(x'))): interpolation (e.g., IDW, Kriging)
 - Multivariate

(f(z, z', Z(x'), Z'(x)) = prob(Z(x) = z|Z(x'), Z'(x))):contextual classification with multi-spectral remotely sensed images...

Probability density function:

$$f(z, x, Z(t_N)) = prob(Z(x) = z | Z(t_N))$$

- \bullet Statistics: higher-order conditional probabilities ... \rightarrow But, how do we model it?
- Examples: interpolation, classification and simulation...

Introduction	Conceptualization	Methods	Cases	Future
000000		०००	0000000	00
Outline				

1 Introduction

- 2 Geographic Conceptualization
- 3 Multiple-Point (Geo)Statistics

4 Case Study

5 Future Work

Introduction	Conceptualization	Methods	Cases	Future
000000		●00	0000000	00
Building Blo	cks			

- **Training images (***TI***)** that are assumed to contain the target spatial patterns;
- Template (T) for scanning training images;
- Data events (dev(x)), which are simultaneous (joint) combinations of attribute values at the template configuration.

イロト 不得下 イヨト イヨト 二日

- Extended Normal Equations Simulation (ENESIM): Guardiano and Srivastava (1993)
- Simple Normal Equation Simulation (SNESIM): Strebelle (2002)
- Pattern-based Simulation (SIMPAT): Arpat (2005)
- Filter-based Simulation (FILTERSIM): Zhang et al. (2006)
- Direct Sampling (DS): Mariethoz et al. (2010)
- Parallel Multiple-point algorithm using a list approach (IMPALA): Straubhaar et al. (2011)

- Scan the training image using the template;
- Store the data events in a tree structure;
- Estimate the conditional probability:

 $prob(z(x) = c_k | t_N) = \frac{\#(z(x) = c_k | t_N)}{\sum_{i=1}^{K} \#(z(x) = c_i | t_N)}$

where c_k is the k^{th} class, and $t_N = \{x_1, .., x_N\}$ are the *N* neighbors of *x*

Introduction	Conceptualization	Methods	Cases	Future
000000	00000000	000	0000000	00
Outline				

1 Introduction

- 2 Geographic Conceptualization
- 3 Multiple-Point (Geo)Statistics

4 Case Study

5 Future Work

Introduction	Conceptualization	Methods	Cases	Future
000000		000	●000000	00
Case Study				

Do we really need the geo-multipole to model real world geographic field information?

- Use two-point statistics and multiple-point statistics respectively to:
 - describe the spatial pattern;
 - simulate the spatial pattern.

24 / 33

000000	0000000	000	000000	00
Descriptio	n of the Pattern			

Variogram-based analysis:

Directional semivariograms for the five patterns

Description of the Pattern

MPS-based analysis: A data event's conditional probability is calculated as the frequency of occurrence:

$$prob(z(x) = 0|t_N) = \frac{\#(z(x) = 0|t_N)}{\#(z(x) = 0|t_N) + \#(z(x) = 1|t_N)}$$

		P(x n1, , ns)			
Templates	Data Events	Patte	P(x=1 n, n=)	P/x=01 p; p;)	P(x=1 p, p,)
n:n:n) n:x:n) n:s:ns		0.000	1.000 0.400	0.600 0.300	0.400 0.700
		0.500	0.500	0.625	0.375
		0.500	0.500	0.000	1.000
		0.530	0.470	0.458	0.542
		0.610	0.390	0.487	0.513

Conditional multiple-point probabilities for patterns 1 and 4

<u>.</u>				
Introduction	Conceptualization	Methods	Cases	Future 00

Variogram-based simulation: Unconditional moving average simulation via the Fast Fourier Transform (FFT) was used; the resulting continuous images were then thresholded using suitable cutoff values so as to reproduce the same proportion of black pixels as the corresponding original binary images.

Variogram-based simulations (pattern 1 and pattern 4)

MPS-based simulation: Unconditional SNESIM was used; template was set to 80×80 squares.

MPS-based simulations (pattern 1 and pattern 4)

Introduction	Conceptualization	Methods	Cases	Future
000000		000	00000●0	00
Observations				

- Multiple-point (geo)statistics (MPS) could better distinguish spatial patterns that are visually different compared to variograms;
- The two simulations using MPS show obviously different patterns with pattern 1 showing more curvilinearity along the west-east direction, and pattern 4 showing more polygonal geometries;
- The MPS-based simulations are more similar to the ones from the original images compared to variogram-based simulation.

Therefore, the geo-multipole, specifically the MPS, indeed plays a role in spatial analysis.

Introduction	Conceptualization	Methods	Cases	Future
000000	00000000	000	000000●	00
Conclusions				

- Discussed motivations for higher-order interactions;
- Proposed a generalized geographic conceptualization, with higher-order interaction included;
- Introduced an algorithm to model the higher-order interactions;
- Showed the strength of higher-order interaction in describing and simulating spatial patterns using real world geographic field information.

Introduction	Conceptualization	Methods	Cases	Future
000000	00000000	000	0000000	
Outline				

1 Introduction

- 2 Geographic Conceptualization
- Multiple-Point (Geo)Statistics

4 Case Study

Introduction	Conceptualization	Methods	Cases	Future
000000		000	0000000	●0
Future Work				

- The application details of multiple-point (geo)statistics for quantifying spatial patterns in geographic phenomena should be further explored;
- Contextual classification and spatial simulation using higher-order interactions could be studied and improved;
- Methods of modeling higher-order interactions for other geographic information could be investigated.

Acknowledgement						
Introduction	Conceptualization	Methods	Cases	Future		
000000		000	0000000	⊙●		

Special thanks to: Dr. Krzysztof Janowicz, Dr. Phaedon C. Kyriakidis, and my colleagues at STKO!

Zhu, R., Kyriakidis, P., and Janowicz, K. (2017). Beyond Pairs: Generalizing the Geo-dipole for Quantifying Spatial Patterns in Geographic Fields. AGILE 2017 Conference on Geographic Information Science.