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[1] The scientific basis for two-tier climate prediction lies
in the predictability determined by the ocean and land
surface conditions. Here we show that the state-of-the-art
atmospheric general circulation models (AGCMs), when
forced by observed sea surface temperature (SST), are
unable to simulate properly Asian-Pacific summer monsoon
rainfall. All models yield positive SST-rainfall correlations
in the summer monsoon that are at odds with observations.
The observed lag correlations between SST and rainfall
suggest that treating monsoon as a slave possibly results in
the models’ failure. We demonstrate that an AGCM,
coupled with an ocean model, simulates realistic SST-
rainfall relationships; however, the same AGCM fails when
forced by the same SSTs that are generated in its coupled
run, suggesting that the coupled ocean-atmosphere
processes are crucial in the monsoon regions where
atmospheric feedback on SST is critical. The present
finding calls for reshaping of current strategies for
monsoon seasonal prediction. The notion that climate can
be modeled and predicted by prescribing the lower
boundary conditions is inadequate for validating
models and predicting summer monsoon rainfall.
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1. Introduction

[2] The atmosphere, by itself, cannot produce random
variations that persist for months; the source of predictabil-
ity beyond two weeks must therefore come from the lower
boundary conditions [Charney and Shukla, 1981; Shukla,
1998]. The ocean has a large heat capacity, giving the
climate system a memory that can result in atmospheric
deviations lasting for months to years. Thus, current notions
on the atmospheric model validation and the two-tier
climate prediction, which predicts future atmospheric con-
ditions using an AGCM alone forced by pre-forecasted
SSTs [Bengtsson et al., 1993], are based on the premise
that the atmospheric models alone should be able to
reproduce climate anomalies or capture the predictable

portion of climate variations when the models are forced
by the observed or ‘‘perfectly predicted’’ SSTs. In a recent
assessment of AGCMs performance, Wang et al. [2004]
challenged this conventional notion. They found that the
eleven AGCMs that participate in the Climate Variability
and Predictability Program (CLIVAR)/Monsoon Intercom-
parison Project show no skill in their ensemble simulations
of the summer rainfall anomalies during the 1997–1998 El
Niño. Different from the previous investigations, they
argued that the neglect of air-sea interaction is possibly a
major cause of the models’ failure. However, their results
were obtained for a two-year period during which the
unprecedented 1997/98 El Niño might have unusual
impacts on the model simulations. Here we further examine
the simulation skill of five state-of-the-art AGCMs in
seasonal precipitation for a 20-year period of 1979–1998.
These models were forced by identical observed SST and
sea-ice, following the design of the Atmospheric Model
Intercomparison Project (AMIP) [Gates et al., 1999]. Each
model made 6 to 10 member integrations to minimize
weather noises and enhance climate signal. A multi-model
ensemble (MME) mean was made to reduce uncertainties
arising from the models’ parameterization of sub-grid scale
processes.
[3] Figure 1 shows the overall skill of the five-model

ensemble simulation measured by the correlation coeffi-
cients between the observed and simulated rainfall anoma-
lies. In the Asian-Pacific summer monsoon (APSM) region
(5�N –30�N, 70�E –150�E), the skills are very low, which
is in sharp contrast to the high skills in the El Niño region
(10�S–5�N, 160�E–80�W) where each individual model
and MME show a correlation coefficient between 0.6 and
0.8. Figure 2 shows that in the APSM and especially in the
tropical western North Pacific (WNP, 5�N–30�N, 110�E –
150�E), all models and their MME have virtually no skills.
The poor simulations of the Indian rainfall were previously
noted [e.g., Sperber and Palmer, 1996; Gadgil and Sajani,
1998]. The results here indicate that the performance of
AGCMs in the tropical WNP is even worse than over India.
The results here also indicate that the failure on monsoon
rainfall simulation given by Wang et al. [2004] is not
specific to the period that is affected by the 1997/98 El
Niño episode, rather it is a general ‘syndrome’ in monsoon
climate simulation.
[4] Based on the Climate Prediction Center Merged

Analysis of Precipitation (CMAP) data [Xie and Arkin,
1997], the June–September rainfall in the APSM region
accounts for approximately 30% of the total tropical rain-
fall, albeit this region occupies only �10% of the tropics
between 30�S and 30�N. The rainfall in this region plays a
critical role in maintaining the global energy/water cycle
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and driving the monsoon climate variability and has far-
reaching impacts on El Niño and global circulation [Webster
et al., 1998; Wang et al., 2001]. In this paper, we propose
one possible answer to the question of why nearly all
AGCMs, when they are given the observed lower-boundary
forcing, are unable to reproduce the summer monsoon
precipitation anomalies? This question is of fundamental
importance to climate simulation and prediction.

2. Observed Relationship Between Rainfall and
SST Anomalies

[5] A key to seasonal prediction is to understand the
relationship between the slowly varying boundary condi-
tions and rainfall anomalies. Figure 3a shows an observed
anomalous rainfall-SST relationship derived from CMAP
and Optimal Interpretation SST [Reynolds et al., 2002] for
summer seasons (June through August) of 1982–2001.
Superposed on these anomaly correlations are the contours
of 6 and 10 mm/day rainfall rate that highlight the regions
of heavy rainfall. The local SST and precipitation anomalies
are positively correlated in the tropical eastern-central
Pacific. However, the correlations are negative in the
WNP and insignificant in the Bay of Bengal. The SST-

rainfall correlations in the MME simulation disagree with
observations primarily in the Asian-Pacific monsoon
regions where the model rainfall tends to correlate posi-
tively with local SST (Figure 3b). In particular, over the
WNP the observed area-averaged correlation coefficient is
�0.36 while in the MME simulation is 0.24, both statisti-
cally significant at the 1% confidence level.
[6] In general, a negative correlation between the sea-

sonal-mean SST and rainfall anomalies may indicate that the
atmosphere affects SST more than SST affects the atmo-
sphere; conversely, a positive correlation means the ocean
plays a major role in determining atmospheric response
[Wang et al., 2004]. To test this assertion, we computed the
lag correlations between monthly mean SST and rainfall
anomalies. As shown in Figure 4a, when rainfall leads SST
by one month, there is a significant negative correlation in
the APSM region, suggesting that the atmosphere has a
significant control on SST. Of note is that the simultaneous
monthly correlations are also negative though in less
degrees. However, when SST precedes precipitation by
one month, the correlations in the same region are only
marginally positive. Given the persistence of SST anomalies
and the rapid response of the atmosphere to SST, the
aforementioned results imply that the impact of SST on
the atmosphere is weaker than the effect of the atmosphere
on SST. Thus, the SST anomalies in the summer monsoon
region cannot be interpreted as a forcing; rather the SST
anomalies in the WNP are, on an average, determined by
the anomalous atmospheric conditions.
[7] The finding that the models are unable to reproduce

the actual SST-rainfall relationship provides a clue to why
these models are unsuccessful in simulating summer mon-
soon rainfall. While the models’ deficiencies are somewhat
to blame (for a detailed discussion, see Wang et al. [2004]),
we offer that the models’ failures are likely due to the lack
of atmospheric feedback to the ocean in the experimental
design, because in the simulation experiments the SST is
prescribed as a forcing.

3. Results of Numerical Experiments With
Coupled and Forced AGCMs

[8] If the erroneous positive rainfall-SST correlation in
the summer monsoon region results mainly from excluding

Figure 1. Correlation coefficients between the observed
CMAP (1979–1999) and the simulated June–August
precipitation anomalies made by five-model multi-ensemble
mean. The five models are National Center for Environ-
mental Prediction (NCEP), Japan Meteorological Agency
(JMA), Center for Ocean-Land-Atmosphere (COLA),
National Aeronautical Space Agency (NASA), and Seoul
National University/Korean Meteorological Administration
(SNU/KMA).

Figure 2. Simulation scales for June–August mean
precipitation as measured by area averaged correlation
coefficients between the observed CMAP and simulation by
five AGCMs and their multi-model ensemble (MME) for
regions of El Niño (blue, 10�S–5�N, 80�W–180�W),
Asian-Pacific summer monsoon (green, 5�N–30�N, 70–
150�E), and WNP summer monsoon (pink, 5�N–30�N,
110–150�E).

Figure 3. (a) Observed and (b) simulated correlation
coefficients between the June–August SST and precipita-
tion anomalies (the color shadings). The contours denote the
climatological June–August mean rainfall rate (in units of
mm day�1). The observed correlations were computed
using 20 years of data (1982–2001) derived from CMAP
rainfall and Reynolds SST. The simulated results were made
by 5 AGCM’s multi-model ensemble simulation.

L15711 WANG ET AL.: CHALLENGE IN PREDICTION OF MONSOON L15711

2 of 4



atmospheric feedback to ocean, then one should be able
to reproduce the observed negative correlation with a
coupled atmosphere-ocean model. To test this idea, we
performed a suite of numerical experiments with a
coupled atmosphere-ocean model. The atmospheric com-
ponent of this coupled model is a T30 version of the
ECMWF (European Centre for Medium-range Weather
Forecast)-Hamburg (ECHAM4) AGCM [Roeckner et al.,
1996]. The ocean component is a 21=2-layer tropical
upper-ocean model [Wang et al., 1995]. The coupling,
namely atmosphere-ocean interaction, was through both
the momentum and heat flux exchanges without flux
correction. Daily coupling was applied to the global
tropics between 30�S and 30�N and climatological SSTs
and sea ice outside the tropics were specified. The
coupled model was integrated for 50 years, and the last
40 years of data were used for analysis. This coupled
model, in general, realistically simulates the climatologi-
cal mean precipitation and SST, the spatial pattern and
temporal characteristics of El Niño, and the tropical
intraseasonal oscillation [Fu and Wang, 2004].
[9] In the coupled experiment, the AGCM is allowed

to interact with the ocean model. In the ‘‘forced’’ exper-
iment the same AGCM was integrated using, as lower
boundary forcing, the same SSTs that were produced by
the coupled model. The only difference between the
coupled and forced experiments is in their initial con-
ditions, which are trivial for climate simulation. The
differences in the simulation outcomes between the two
experiments are interpreted as being due to the lack of
atmospheric feedback.
[10] Figure 4b shows that the coupled run produces lag

correlation patterns that bear qualitative similarities with
the corresponding observed counterparts. In the Asian-
Pacific monsoon region, the correlations change signs
from lag �1 to lag +1 month in both the observation

and the coupled run, although the simultaneous negative
correlations in the coupled simulation are somewhat lower
and the positive correlations at lag +1 are higher. When
rainfall leads SST by 1-month, the monsoon precipitation
and SST are significantly negatively correlated, resem-
bling closely the observations. In contrast, the results
obtained from the forced experiment (Figure 4c) show a
significant concurrent positive correlation and similar
positive, but lower, lead-lag correlations. This persistent
positive correlation pattern with a maximum concurrent
correlation suggests that slow variations of SST in the
model act to regulate local rainfall anomalies: The atmo-
spheric response to the underlying SST forcing is suffi-
ciently rapid, making the maximum monthly correlation
occur without a lag.
[11] The results shown in Figure 4 imply that the coupled

and forced solutions represent different monsoon climates.
This ‘‘bifurcation’’ of solution is essentially caused by the
absence of atmospheric feedback in the forced run. Obvi-
ously, the errors in the initial conditions trigger how or
where the forced and coupled solutions depart.
[12] The coupled model results are compared with the

newly released multi-model seasonal prediction experi-
mental results from the European Union-funded
DEMETER project (Development of a European Multi-
model Ensemble system for seasonal to interannual pre-
diction). DEMETER was carried out by European part-
ners and coordinated by ECMWF [Palmer et al., 2004].
Seven coupled models participated in this experiment.
The coupled model forecasts for May–October season
demonstrate that the local SST-precipitation relationships
in all the coupled models resemble that shown in
Figure 4b, confirming that these coupled models, despite
their different physical schemes, are able to produce
qualitatively realistic SST-rainfall relationships. In addi-
tion, when these atmospheric models are driven by

Figure 4. (a) Observed lead-lag correlation between monthly mean SST and precipitation anomalies computed for May
through October of 1982–2001. (top) The correlation coefficients when precipitation leads SST by one month, (middle) is
concurrent with SST, and (bottom) lags SST by one month. The sample size is 80 for the time series at each grid. (b) The
same as in Figure 4a except that the correlations were computed from the coupled ECHAM-ocean model simulation. (c) The
same as in Figure 4a except that the correlations were computed from the forced ECHAM simulation.
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persistent SSTs, the local SST-rainfall correlations become
similar to those found in the forced run (Figure 4c).

4. Concluding Remarks

[13] We have shown that observed seasonal mean rainfall
and SST anomalies are negatively correlated in the Asian-
Pacific summer monsoon heavy rainfall region, especially
when rainfall leads SST by one month, suggesting that SST
anomalies are forced by the atmospheric anomalies. We
have demonstrated that the coupled models can reproduce
the lead/lag correlation between SST and precipitation
anomalies realistically. However, if the same atmospheric
model is forced by the SST anomalies that are produced by
the coupled model, the resulting local SST-rainfall relation-
ships are at odds with observations. The neglect of atmo-
spheric feedback makes the forced solution depart from the
coupled solution in the presence of initial noises.
[14] We argue that the unsuccessful simulations of the

rainfall variability in the Asian-Pacific summer monsoon
under AMIP-type experimental design are partly caused by
the neglect of air-sea interaction in the warm Indo-Pacific
oceans. In reality and in the coupled model, the SST in the
warm pool is primarily a result of atmospheric forcing, thus,
the abnormal precipitation and SST are negatively
correlated. On the other hand, if the SST is considered as
a forcing to the model atmosphere, the atmospheric model
would be unable to reproduce the correct rainfall anomalies,
because the forced response tends to produce a positive
local rainfall-SST relationship.
[15] The present finding suggests that the coupled atmo-

sphere-ocean processes are extremely important in the
heavily precipitating monsoon regions. Kumar et al. [2005]
also demonstrate significant improvements in the skill of
Indian monsoon predictions when atmospheric models are
coupledwith the ocean. Additionally,WuandKirtman [2005]
showed the critical role of Indian Ocean coupling in simulat-
ing atmospheric variability over the Pacific Ocean.
[16] The results presented in this study call for rethinking

current strategies for validating dynamic climate models and
for climate prediction. In contrary to conventional notion,
the summer monsoon rainfall cannot be simulated correctly
by prescribing lower boundary forcing. While the AMIP has
provided a useful benchmark for model sensitivity and
predictability experiments to SST forcing, our results reveal
an intrinsic limitation in this manner of simulating summer
monsoon precipitation. To adequately identify the deficien-
cies of models in simulating summer monsoon variability,
coupled atmosphere-ocean models are needed.
[17] Many operational centers have adopted the two-tier

approach for seasonal climate prediction. This approach has
been the most important activity in dynamic climate pre-
diction in the past 10–15 years. This strategy works for the
most important forcing (equatorial Pacific SST) and for
those regions where SST determines the local wind conver-
gence and SST itself is primarily determined by ocean
processes. However, in the Asian-Pacific summer monsoon
regions, where atmospheric feedback plays a major role in
determining local SST, the two-tier approach would yield a
forced solution that differs from realistic coupled solutions.
Thus, only coupled atmosphere-ocean models or regionally
coupled models can provide the necessary condition for

being able to correctly forecast the predictable portion of
summer monsoon rainfall. Further studies of the nature of
the monsoon-ocean interaction and climate predictability in
the Asian-Pacific summer monsoon region using multi-
model long-term integrations are needed to confirm that
the present conclusions are independent of models’ physical
parameterizations and the simulation skill of rainfall vari-
ability over Asian-Pacific monsoon region is improved in
coupled atmosphere-ocean models.
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