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11.1. Introduction and Motivation

Ontology engineering methods, frameworks, and tools have been studied for more
than 20 years and have been widely applied in academia, industry, and at govern-
ment agencies. While there are considerable differences, most established methods
share a common core, namely a knowledge acquisition activity that spans over
phases such as (requirements) specification, conceptualization, and formalization
with the goal of effectively eliciting knowledge from domain experts to implement
an ontology [4, 10, 15, 19–22]. Despite substantial progress, knowledge acquisi-
tion remains a key bottleneck and has been extensively studied in work on expert
systems since the 1980s [14]. Some of the underlying problems such as scaling can
be addressed by a combination of classical top-down engineering with bottom-up,
data-driven techniques [5]. Today, this is increasingly important for arriving at
a deeper axiomatization of Linked Data to improve interoperability and query
federation.

However, one can also look at the problem of acquiring knowledge from do-
main experts from an entirely different angle and argue that the challenge lies in
reaching agreement between domain experts [12] together with the misconception
that there has to be a common understanding of terminology within a particular
domain. While there should be a broad and domain overarching agreement on
units of measure, the same cannot be said about concepts such as environment,
resilience, forest, city, and so forth. This is not only true across domains but
even within research fields and communities [10]. This misconception may have
its roots in the successful standardization of protocols, formats, and languages
which may have caused ontology engineers and domain experts to believe that
one could and should also standardize meaning on the Web.



The meaning of terms, however, depends on different viewpoints, cultures,
underlying themes, legislation, state of knowledge, level of detail, current con-
text, and many other aspects that jointly lead to the vast heterogeneity of data
published on the Web today. To give an intuitive and commonly used example,
a street can be conceptualized as a connection between two places from the view
point of transportation science or as a separation that cuts a habitat into pieces
from the view point of ecology. This heterogeneity is not a problem that needs
to be resolved but a resource that enables us to address challenges that cannot
be fully understood by considering one of these aspects in isolation. Nonethe-
less, some common core is needed to retrieve, reuse, and integrate data across
different sources. In other words, communication and thus interoperability break
down [17] if there is no overlap between the underlying conceptualizations of the
shared (physical) space. As specifications of these conceptualizations, ontologies
provide us with the means to approximate commonalities and differences between
datasets, communities, domains, and so forth. Simply put, the purpose of ontolo-
gies is to make the intended meaning explicit, not to agree on what terms mean.

Following this argumentation, the key challenge for ontology engineering be-
comes striking a balance between fostering interoperability without restricting
semantic heterogeneity, i.e., without enforcing a common understanding. One
approach is to defer the introduction of concepts that are heavy on ontologi-
cal commitments, e.g., vulnerability, and first focus on the development, reuse,
and combination of common building blocks [10]. The resulting ontologies re-
flect the conceptualizations of the data providers and still ensure a minimum
fallback level for interoperability via the usage of these common building blocks.
Content ontology design patterns [6] are a promising candidate for such an ap-
proach and also act as a middle ground between engineering local ontologies from
scratch and trying to reuse existing ontologies despite their differing ontological
commitments [2, 16].

In this work, we describe our experience in modeling such content patterns
with domain experts from a variety of different domains and fields including
geography, oceanography, geology, industrial ecology, transportation science, ar-
chitecture, the digital humanities, and so forth. The presented work reflects
on the lessons learned and challenges of running more than a dozen vocabulary
camps (VoCamps) and similar events over the past six years. While we will focus
on multi-day vocabulary camps here, the discussion can be generalized to other
ontology engineering events that bring domain experts and ontology engineers
together.

In the following, we will address the why, what, and how of pattern modeling
with domain exerts. First, we will briefly revisit the perceived value proposition
of ontologies and Semantic Web technologies for domain experts to better un-
derstand their expectations and reasons for participating in the development of
ontologies. We will then discuss how VoCamps are structured and why we believe
they are a successful approach to pattern engineering. Finally, using the Semantic
Trajectory pattern [8], we will outline modeling choices by example and highlight
how they foster reusability and flexibility of patterns.



11.2. The Value Proposition of Ontologies

In the following we will revisit the value proposition of ontologies from the view
point of individual domain experts (here researchers), in contrast to large-scale
data providers, government agencies, industry, and so forth, to better understand
why they become interested in ontologies and participate in vocabulary camps.
We will structure the value proposition into three different stages: publishing and
retrieving data, interacting with data, and reusing and integrating data. Note that
in contrast to previous work [11], we focus on the perceived value proposition.

11.2.1. Publishing and Retrieving Data

The added value of ontologies starts with publishing own data. There are at
least three different motives to semantically annotate these data by means of
ontologies. First, researchers hope to improve the discoverability of their scien-
tific results beyond mere keyword search. This aspect goes hand in hand with
the hope to be able to better and faster retrieve useful data from others. As a
consequence, many domain experts approach ontology engineering from the per-
spective of building richer taxonomies. Second, an increasing number of funding
organizations, scientific journals, and universities require data publication and
managing strategies. Semantic Web technologies are perceived as a promising
choice for doing so. The thirds and final reason is less obvious despite having
the most important long-term effects. By semantically annotating their data,
scientists improve the reproducibility of their results, e.g., by adding provenance
records, and reduce the risk of (accidental) misinterpretation and therefore wrong
usage of their own data [18]. Based on our observations, many domain experts
interested in ontology engineering have worked with databases and conceptual
modeling environments before and thus may falsely expect that ontologies are
primarily used for integrity constrains.

11.2.2. Interacting with Data

Knowledge exploration, e.g., by follow-your-nose browsing or faceted search, are
common ways to interact with Linked Data and in many cases more attractive
and intuitive to domain experts than querying endpoints using SPARQL. A com-
mon hope associated with Linked Data is that the available data hubs will store
different information about common entities and thus enable a more holistic view.
What is often overlooked, however, is the fact that these data sources will likely
contain overlapping information. To give an example, there will be multiple pop-
ulation counts for a populated place and multiple geographic coordinates for its
centroid. Given the decentralized nature of the Web and current research focus, a
majority of exciting frameworks do not yet consider Linked Data fusion/conflation
[1]. Consequently, the perceived value proposition of Semantic Web technologies
differs from the research focus. From an ontology modeling perspective, one could
argue that a stronger axiomatic foundation will ease Linked Data fusion, e.g., by
identifying functional properties. For now, Linked Data users have to handle
contradicting data themselves.



11.2.3. Reusing and Integrating Data

Discovering and interacting with data on the Web is often a means to an end
with the reuse and integration of the data being the final goal. A very common
misconception among domain experts is the believe that the creation of Linked
Data and here especially the use of owl:SameAs will magically enable query fed-
eration. The realization that even a densely linked global graph of data does not
necessarily enable queries over multiple of the involved data hubs often comes as
a shock [9]. Understandably, the first reaction is to call for common top-level and
domain ontologies to ensure that the same classes and properties are used across
these data sources. It takes a deeper understanding along the lines of argumen-
tation made in the introduction section and a basic understanding of ontology
alignment to realize why domain ontologies do not exist for the vast majority
of research fields and why those that exist are facing substantial challenges. A
second misconception exists with respect to the formal semantics of knowledge
representation languages such as OWL. As discussed above, many domain experts
and data providers approach ontologies from an integrity constraints or object-
oriented design perspective and do not fully understand the consequences of an
inferential semantics and the Open World Assumption. The most common ex-
ample are (global) domain and range restrictions and the believe that they would
constrain the usage of properties. This is one of the reasons why vocabulary
camps make use of guarded domains and range restrictions instead [13].

11.3. Vocabulary Camps for Pattern Engineering

In this section we will introduce VoCamps as a means to develop content patterns
and outline how they are set up. Most of what will be said can be generalized to
related forms of synchronous knowledge acquisition.

11.3.1. General Setup and Scope

The events organized over the past years were scheduled for 2-3 days. Here we will
outline a 2-day event. VoCamps are unconferences, i.e., there is no registration fee,
no formal presentations (aside of selected invited talks), no proceedings, and so
forth. Instead VoCamps focus on bringing domain experts and ontology engineers
together to address real modeling issues. (Geo)VoCamps typically draw between
20 and 40 attendees. While the composition varies substantially, arriving at
a balanced combination of ontology engineers and domain experts was not a
problem so far. Ideally there would be one experienced ontology engineer per
2-3 domain experts. At least in case of GeoVoCamps, a team of 6-8 regular
participants ensures continuity and brings in the required expertise.

VoCamps typically start with domain experts that bring their modeling prob-
lems to the event. From these, 2-3 are selected and addressed during the VoCamp.
The key success to a productive event is to have relatively short but intense break-
out sessions with frequent reports back to uncover similarities and differences with
the other groups/patterns and to identify potential issues and improvements. The



Table 11.1. A representative agenda for a VoCamp.

1st day 2nd day
Morning • Introduction

• Report from previous VoCamps
• A selected pattern as example
• Invited talks

• Brief recap
• Breakout groups work on patterns
• Reports from the groups
• Breakout groups (implementation)

Afternoon • Decide on breakout groups
• Breakout groups work on patterns
• Reports from the groups

• Reports from the groups
• Breakout groups (examples/data)
• Reports from the groups
• Brief documentation

goal of a VoCamp is typically the conceptualization and draft axiomatization of
a pattern as well as a brief documentation together with examples. In the weeks
following a VoCamp, the results are improved and polished and finally published
as an (OWL) ontology together with a paper documenting and motivating the
work. Follow-up VoCamps then take up on this work to align their own patterns,
learn from the modeling and implementation approaches taken before, or refine
certain aspects of the pattern. Experience from the last years show that at least
2 of 3 patterns started at a VoCamp are eventually published.

It is too early to determine the long-term impact of the developed patterns
and the VoCamp model.1 However, some of them, e.g., the trajectory or agent-
role patterns, have been used in various settings. At this stage, we believe that
bringing domain experts and ontology engineers together and spreading an un-
derstanding for the possibilities and limitations of Semantic Web technologies is
the core outcome. The uptake of ontologies (and patterns more specifically) in
large cyber-infrastructures such as NSF’s Earthcube as well as a growing interest
among domain experts from multiple disciplines provides positive signals.

11.3.2. VoCamp Agenda and Workflow

Table 11.1 outlines a representative agenda of a VoCamp. The morning of the first
day is used to introduce the unconference-style to new participants, to report on
previous VoCamps and their results thereby ensuring continuity, as well as a brief
presentation outlining the design and implementation of a pattern as example.
These three items set the stage and scope for the event. This is typically followed
by one or two invited short talks of about 20 minutes that introduce an interesting
domain or research field or provide a novel perspective on patterns and ontology
engineering. Finally, domain experts get a chance to pitch their modeling projects
and ideas before the lunch break.

The afternoon of the first day usually begins with selecting 2-4 potential top-
ics/patterns and then splitting into breakout groups. Ideally, each group consists
of 6-10 members with at least one experienced ontology engineers, domain expert,
data provider, and dedicated scribe (or moderator). During the first breakout ses-
sion which takes 2-3 hours, each group decides on the scope of their work, i.e.,

1See also http://dase.cs.wright.edu/blog/geovocamps-taking-stock.



where to start and stop modeling a certain topic or domain problem. This phase
is also characterized by discussions on the used domain terminology and is the
most intense part of the VoCamp as no common ground has been established so
far. Explaining that multiple views can be reconciled and that different modeling
choices can be transfered into each other often helps to prevent turf wars between
domain experts. That said, different and contradicting views points brought in
by domain experts are the most fruitful aspect of this scoping phase as they
will later ensure the reusability and extensibility of the developed pattern. The
first afternoon ends with a reporting and feedback session. These sessions are
of fundamental importance as allowing members from other groups to actively
comment on and contribute to other patterns helps to establish a constructive
atmosphere and ensures buy-in for the final patterns. Finally, the participants
also discuss reoccurring modeling choices and strategies which will further ease
the later alignment of the patterns.

The second morning and afternoon sessions follow the same template of in-
tense work within breakout groups and frequent reports. The most important
difference, however, is that a draft implementation of the patterns (typically in
OWL) has to be developed and presented by the end of the second morning. The
afternoon breakout session is then used to populate the pattern with real data
and to document the work to a degree where it can be finished in an asynchronous
style as the participants come from different institutions and countries.

There is no specific ontology engineering method that is used across all groups
and VoCamps. Nonetheless, there are a few common aspects that have emerges
as successful strategies. One of them is the formulation of competence questions
[7] during the first breakout session and the use of tools to develop concept maps
on a shared screen. Working with real data, populating the draft patterns, and
writing SPARQL queries to retrieve the data are other commonly used strate-
gies. Finally, some of the core VoCamp members rotate between groups to keep
the meeting productive and to ensure that no single domain expert or ontology
engineer dominates the discussion.

11.4. Pattern Design Decisions by Example

A discussion of what distinguishes a pattern from a small ontology and how to best
engineer reusable patterns is out of scope here. Nonetheless, it is worth looking at
a specific example of a pattern designed at a VoCamp to understand why certain
choices have been made, how they enable a broad and domain spanning usage
of the pattern, and what kinds of problems are typically addressed. We will use
the Semantic Trajectory pattern as example [8]. More specifically, we will argue
how the pattern fulfills the criteria for patterns informally defined as quality and
reusability proxies at VoCamps, namely that patterns should:

• Cover a wide range of domains or application areas.
• Be extensible to provide additional details.
• Supports multiple granularities.
• Provide an axiomatization beyond mere surface semantics.
• Have various hooks to well-known ontologies / patterns.



• Be self-contained to a degree where they can be used on their own.

It is interesting to note that the second and last point require striking the
right balance between developing a pattern that is generic enough to act as a
building block for an application ontology but self-contained (and specific) to a
degree where a meaningful use, e.g., the creation of Linked Data, does not require
additional ontologies. The deeper axiomatization of the pattern is left to a later
chapter in this volume.

Trajectories play a key role in many areas, be it for wildlife tracking, studies
of human movement, traffic analysis, scene modeling, cruises of oceanographic
research vessels, health and exposure research, to name but a few. Simply put, a
trajectory is the path that a moving object takes through space as a function of
time. While such definition also includes the trajectory of a projectile, the pattern
is designed for cases that benefit from a semantic annotation of the moving object,
the places visited, the mode of transportation, the sensor used to determine the
objects location at a given time, and so forth, thus forming a semantic trajectory.

To do so, the pattern introduces classes such as fix, segment, moving object,
position, source, and attribute, together with relations between them. Fixes, for
instance, determine the position of an object at a certain time and are observed
by some source. Two successive fixes of the same trajectory are connected by a
segment, i.e., a linear interpolation of the path taken. The segments themselves
are traversed by a moving object.

Interestingly, as depicted in figure 11.1, this minimal pattern already supports
a wide range of use cases. For instance, one could model the path taken from
UCSB to the Los Angeles airport as a single segment connecting the start fix
Santa Barbara with the end fix Los Angeles. In such case, the fixes are not just
arbitrary measurements taken by the used positioning technology, e.g., a GPS-
based navigation system, based on the device’s sampling rate but meaningful
places. In this case, the segment represents U.S. Highway 101 and the moving
object (if given) could be a car or bus. Such modeling, of course, does not imply
that the highway is indeed a linear feature nor that only two fixes were taken.
Instead, it reflects the needs, here the resolution, of an application or use case. A
typical example would be studying origin-destination trips. On the other extreme,
one can approximate the exact path taken by a moving object by increasing the
number of fixes and thus shortening the linear segments up to the level supported
by the used positioning technology. For example, a modern smartphone can take
GPS fixes once every second with an accuracy of about 5 meters. Here a typical
use case for the pattern would be recreational hiking. Finally, the pattern can
also cover the middle ground. In the first example all fixes were places, while
they were mere positioning artifacts in the second case. In many trip planning
applications or wildlife monitoring it is important to roughly approximate the
path taken and also to identify certain Points Of Interest (POI). Intuitively a fix
taken at a fuel station or watering place carries additional meaning. Summing
up, the Semantic Trajectory pattern supports multiple granularities and can be
used for a wide range of use cases. It is also self-contained in the sense that the
described examples can be fully modeled with the pattern alone.

The pattern also provides multiple opportunities for integration with other
well established patterns and ontologies. For instance, the pattern specifies that
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fixes are created by some source but does not provide any further axiomatiza-
tion for this source. Consequently, the source could be a GPS sensor, a human
observer, or even a written itinerary from a historical expedition. If the source
is indeed a sensor, it can be further specified, e.g., to describe the frequency
(ssn:Frequency) using the W3C-XG Semantic Sensor Network ontology (SSN)
[3]. Similarly, the pattern does not define place types as this would be out if
scope and limit reusability. Instead, one can state that a certain fix was taken
at a position within a recognized place of a given type, e.g., using a subclass
of DBpedia’s place class. The pattern also provides a more general way to add
domain and application-specific information by allowing every fix and segment
to have additional attributes, e.g., the type of street traveled. Summing up, the
pattern provides hooks for other patterns and ontologies thereby acting as a true
building block that can be easily extended and combined.

Let us finally consider an example that brings the aforementioned points
together. Figure 11.1 shows a part of a human trajectory. It starts at a fix that
does not provide any further positioning details, e.g., to mask the home location
of a user. The first segment of the trajectory is traveled by a car. Fix1 was taken
by the car’s navigation system at a specific position that can be represented as
a point-feature in Well-Known-Text (WKT) serialization and by using OWL-
Time. Segment4 was traveled via a specific subway line. So far, none of the
segments had an associated geometry. However, this is possible (conform with
GeoSPARQL), e.g., by using a LineString. Finally, the last fix was created by a
user’s smartphone and the position is not given in terms of geographic coordinates
but as so-called geo-social check-in to a Point Of Interest, e.g., a bar, using a social
network application such as Foursquare/Swarm. We have since used the Semantic
Trajectory pattern to model oceanographic cruises, wildlife tracking, and so forth
to substantiate the reusability and extensibility claims. In cases, of cruises, for
instance, POI are stops at ports and the moving objects are restricted to research
vessels.

11.5. Summary

In this chapter we briefly motivated the need for an ontology design pattern-driven
approach to ontology engineering by pointing out that Semantic Web technolo-
gies have been often misunderstood as tools to reach or enforce a common agree-
ment, i.e., view on the world, while their true nature is in making meaning and
thus differences in the interpretation of terms in different communities explicit.
We revisited the perceived value proposition of ontologies for domain experts to
understand their motivation for joining VoCamps and for using Semantic Web
technologies. We pointed out that not all of these hopes can be addressed by the
current state-of-the-art or because they contradict with essential design choices
made at early stages of the Semantic Web. Next, we discussed how VoCamps
are structured and the methods they use to develop patterns. Finally, we have
presented a pattern developed at a VoCamp to highlight selected design decisions
by example.
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