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ABSTRACT
Feature types play a crucial role in understanding and ana-
lyzing geographic information. Usually, these types are de-
fined, standardized, and controlled by domain experts and
cover geographic features on the mesoscale level, e.g., pop-
ulated places, forests, or lakes. While feature types also
underlie most Location-Based Services (LBS), assigning a
consistent typing schema for Points Of Interest (POI) across
different data sets is challenging. In case of Volunteered Ge-
ographic Information (VGI), types are assigned as tags by
a heterogeneous community with different backgrounds and
applications in mind. Consequently, VGI research is shift-
ing away from data completeness and positional accuracy as
quality measures towards attribute accuracy. As tags can be
assigned by everybody and have no formal or stable defini-
tion, we propose to study category tags via indirect obser-
vations. We extract user check-ins from massive real-world
data crawled from Location-based Social Networks to under-
stand the temporal dimension of Points Of Interest. While
users may assign different category tags to places, we argue
that their temporal characteristics, e.g., opening times, will
show distinguishable patterns.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS; H.3.3 [Information Search and Retrieval]: Re-
trieval models; H.5.3 [Group and Organization Inter-
faces]: Web-based interaction

General Terms
Theory, Measurement, Standardization
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1. INTRODUCTION AND MOTIVATION
As argued by Harnad cognition is categorization [15]. Our
behavior towards different types of entities varies based on
what they afford [12]. Categorization itself does not require
language, but assigning terms to categories plays a major
role in communication. However, as we cannot compare cat-
egories in our minds directly and also assign different la-
bels to them, our understanding of terms differs [19]. While
addressed in everyday life by situated simulation [4], defin-
ing the meaning of domain vocabulary is among the main
challenges for interoperability, information re-usage and re-
trieval, as well as recommendation systems.

Ontologies specified using formal knowledge representation
languages are a promising approach to restrict the interpre-
tation of terms towards their intended meaning and have
a long tradition in GIScience [22, 11, 18]. While several
methodologies and tools have been introduced over the last
years, ontology engineering is a difficult task. It requires
a common agreement among domain experts and a deep
understanding of the logics-based knowledge representation
languages [10]. INSPIRE1, for instance, provides an inter-
esting example for the difficulties arising when trying to ar-
rive at a common and formal agreement for the definition
of mesoscale feature types, e.g., rivers [9]. The need for
richer semantic annotations to improve information retrieval
has recently been acknowledged by Google, Yahoo, and Mi-
crosoft by launching their common schema.org platform.

Feature types also play a crucial role for Volunteered Geo-
graphic Information (VGI), e.g., for projects such as Open-
StreetMap. These projects often maintain a semi-formal vo-
cabulary with dozens or even hundreds of feature types2.
The categorization of Points of Interest (POI) is especially

1The Infrastructure for Spatial Information in the European
Community: http://inspire.jrc.ec.europa.eu/
2See OSM wiki at http://wiki.openstreetmap.org/wiki/
Map_Features as an example.

http://inspire.jrc.ec.europa.eu/
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Map_Features


difficult for several reasons. For instance, a single building
can accommodate several different types of stores, those can
change frequently over time, and offer multiple functionality.
ATMs are a typical example discussed in the OpenStreetMap
community. For instance, many post offices or banks are an-
notated as ATMs, i.e., taxonomic and partonomic relations
are confused. The OSM community proposed to use the
combination of amenity=bank and atm=yes as workaround.
Pubs and bars are another example and led to the intro-
duction of the similar features list in the OSM wiki. While
the need for ontological definitions of such feature types is
largely acknowledged and may not only benefit retrieval but
also data cleaning and integration, attempts to develop POI
ontologies have failed so far.

Approaches which try to make a heterogeneous and global
community agree on definitions for types, e.g., Bar or Bank,
by defining them in terms of walls, tables, menus, or guests
are not likely to be successful. A narrow definition of Bar
would exclude many places that locals perceive as bars, while
too broad definitions would fail to distinguish Bar from other
feature types such as Café. Based on our previous work [24,
34, 17], we propose to study massive real-world data from
Location-based Social Networks (LBSN) to extract ontolog-
ical primitives out of user behavior. These primitives do not
define bars in terms of walls or tables, but their temporal
characteristics, e.g., whether they are weekend or weekday
locations, visited during daytime or in the evening. In this
study, and complementary to our previous work on the se-
mantic annotation of POIs [34], we are not interested in find-
ing suitable tags for untagged POIs but in finding unique
temporal characteristics for feature types. Together with
our work on Spatial-Semantic Interaction [24], we aim at
introducing Semantic Signatures as analogy to spectral sig-
natures from remote sensing. Similarly to multiple spectral
bands, these signatures can combine spatial, temporal, and
thematic bands, and thereby identify feature types bottom-
up. In other words, we use space and time as fundamental
ordering principles for knowledge organization [17].

The remaining paper is structured as follows. First, we intro-
duce Location-based Social Networks and Volunteered Geo-
graphic Information in more detail. We point out how we
applied them in previous work to mine for spatial and tempo-
ral patterns. Next, we introduce our approach to Temporal-
Semantic Interaction, present the used data, and discuss new
measures. We then outline how our work can be applied for
tag recommendation, place selection, and data cleaning – all
of them being major challenges for LBSN and VGI. To do
so, we point out how algorithms could use our findings and
show brief examples for each case. Finally, we summarize
our work and highlight directions for future work.

2. BACKGROUND AND RELATED WORK
This section reviews works necessary for the understanding
of our research. While we will use category tags from LBSN
as feature types, one has to keep in mind that volunteers do
not follow rigid typing schemata. Hence, partonomic, tax-
onomic, and activity-related terms may be mixed. In order
to stay as close as possible to the real data (and the labeling
used by the community), we will use the terms feature type
and category tags interchangeably. However, we will refer to
activity related tags, e.g., cocktail, as category tags.

2.1 Location-based Social Networks
Geography and especially location play an increasing role
in social online networks such as Facebook, Foursquare, or
Whrrl, and have been analyzed in several studies [6, 29, 25,
35]. Work on feature types in Location-based Social Net-
works was presented in [34, 20], where [34] exploited the
regularity of user behaviors in LBSN to assign category tags
to untagged places, and [20] explored the place naming pref-
erences of users in Location-based Social Networks.

Facebook researchers analyzed the distance between the
users’ social relations, and utilized locations of friends to
predict the geographic location of specific users [3]. Cheng
et al., modeled the spatial distribution of words in Tweets
to predict the user’s location [5]. Characterizing network
properties in relation to local geography is studied in [33].
The behavior of users with respect to the location-field in
their Twitter profiles has been studied in [16]. How and why
people use location-sharing services and the privacy issues
related to those services have been discussed in [21, 32, 31].
Finally, applications such as place recommendations [35, 36,
37, 38], content delivery services [28], and friend recommen-
dations [30, 7] have been proposed.

2.2 Volunteered Geographic Information
Volunteered Geographic Information [13] describes the phe-
nomenon of volunteers contributing geographic data and
making them accessible under an open license. Projects such
as OpenStreetMap (OSM)3 or Wikimapia4 provide plat-
forms to publish and access VGI. Tags, representing feature
types in VGI, are much more volatile than their counter-
parts defined by professional authorities. They are subject
to frequent changes that emerge from informal discussions
within the VGI community. Their usage is largely based on
individual experience, cognition, as well as the used tagging
and rendering software. So far, most research on VGI has
focused on data completeness and positional accuracy [39,
23]. Assessing data quality with respect to non-spatial at-
tributes and especially feature types is difficult as reference
data is missing. The methods to determine that a certain
POI tagged as Café is semantically less accurate than an-
other POI marked as Bar if both are, in fact, identified as
Nightclub are largely missing [24]. Additionally, this would
require a ground truth feature type. Our work aims at set-
ting the ground for such a semantic measurement framework.

Studying feature type definitions in OSM5, shows that there
is no explicit account for time. The key-value pair based
formalization of types only distinguishes between, for exam-
ple, amenities and shops on the higher level, and bars and
cafés on the lower level. Temporal references are rare and
can only be found on the informal description pages. For
instance they are used to highlight regional differences:

In Mediterranean countries, the word “bar”
has a different meaning [...] You go there in the
morning to have breakfast, at lunch they serve
simple meals, all day long (if not closed after

3http://www.openstreetmap.org
4http://wikimapia.org/
5http://wiki.openstreetmap.org/wiki/Map_Features

http://www.openstreetmap.org
http://wikimapia.org/
http://wiki.openstreetmap.org/wiki/Map_Features


lunch) people use them to get a quick coffee and in
the evening it’s a meeting place to get an apéritif
before dinner. 6

Without a more formal approach to temporal aspects, VGI
cannot be used for place recommendations. The above exam-
ple also indicates that regional differences matter and should
be accounted for.

2.3 Spatial-Semantic Interaction
The spatial bands of semantic signatures, i.e., defining what
you are by where you are, is equally important as the tempo-
ral bands introduced in this paper. However, both aspects
differ substantially. Of most relevance for our work is the
cyclicality of time in contrast to space, i.e., periods play a
major role in our perception of time. In our everyday lives,
we refer to discrete and reoccurring partitions of time, e.g.,
evening, weekend, or New Year. In contrast, space cannot be
partitioned in such a way. Consequently, the above formula-
tion has to be rephrased as what you are is where you are with
regard to other geographic features. Spatial-Semantic Inter-
action models this relationship [24]. Other features types
are not included explicitly as categorical variables but im-
plicitly through a similarity measure. Thereby, it is possible
to apply statistical measures such as concept variograms [2]
or variations of Diggle’s D0 statistic [8].

Figure 1: Spatial semantic interaction of bars in Lon-
don computed from Open Street Map data; based on
[24].

Figure 1 depicts an example of a Spatial-Semantic-
Interaction D0 plot. The z-value is interpreted as the like-
lihood of features of type Bar to co-occur with other fea-
tures (of various types) within a certain semantic and spa-
tial range. Up to a distance of 300 meters and an inter-type
similarity value of 0.5, a significant clustering can be ob-
served. In other words, bars tend to co-occur with other bars
or features of similar types, e.g., nightclubs, within a close
proximity. These two thresholds (space and type similarity)

6http://wiki.openstreetmap.org/wiki/Tag:amenity=bar

strongly vary among feature types and, therefore, can be
used as one band for unique semantic signatures. Together
with the temporal bands discussed in this paper, they can be
employed to disambiguate feature types. Ontological primi-
tives such as clumped or regularly distributed on the spatial
side, and evening, weekend, or weekday on the temporal side
can be computed and used to construct data driven, bottom-
up POI ontologies [1]. Application areas will be discussed in
section 4 in more detail.

3. STUDYING TEMPORAL-SEMANTIC
INTERACTION

In this section, we introduce the crawled data, discuss the
weekly and daily temporal bands, as well as a notion of
semantic feature type similarity derived from the check-in
behavior of users in Location-based Social Networks. Fi-
nally, we compare the temporal patterns using a measure in-
spired by classical point-pattern analysis. Our study aims at
demonstrating that a behavioristic approach can be used to
discriminate types of places by observing user activities; see
also the algebraic approach in [27]. For instance, the crawled
check-in patterns to colleges differs significantly from those
for cocktail-related places. Hence, our work can serve as ba-
sis for various services by predicting the type of an untagged
place based on the check-in time of a specific user. With
respect to the example above, a untagged POI visited reg-
ularly during the evening on weekends is most likely not a
college. In this work, we focus solely on temporal aspects –
the targeted semantic signatures will combine spatial, tem-
poral, and thematic bands.

We conduct our research based on a dataset crawled from
the Whrrl7 platform in spring 2011. Whrrl was a repre-
sentative Location-based Social Network and the first to
display check-in times, i.e., the timestamps of users enter-
ing a certain place. Meanwhile, Whrrl has been acquired
by Groupon. Further popular LBSN include Foursquare,
Gowalla, or Facebook Place. However, they do not offer ac-
cess to the temporal data required for this study. We have
used two kinds of data, the feature types of places as well as
their check-in times. During crawling Whrrl for one month,
we extracted 35,745 users and their 440,939 check-in activi-
ties to 150,300 different places; see Table 1.

Number of users 35,745
Number of places 150,300
Number of check-ins 440,939
Number of tags 408

Table 1: Data crawled from Whrll in spring 2011.

From those places, we extracted 408 unique category tags,
such as restaurant, shop, or bar used for feature typing.
It turns out that types are not uniformly represented in
Location-based Social Networks. POIs with tags related to
dining, food, shopping, and nightlife are the most frequently
checked-in places; about 74% of all check-ins are related to
them. This observation confirms our common sense about
daily life and also the kind of data that users make public.
Intuitively, people would like to share their experience about

7http://www.whrrl.com



Figure 2: Check-in frequency distribution for selected geographic feature types in Whrrl.

activities such as dining, shopping, or their nightlife. Conse-
quently, they are more likely to expose their footprints when
visiting such places. As more users join Location-based So-
cial Networks, the check-in activities to those places as well
as their number increases. In other words, places of certain
types are over-represented in terms of check-ins and their
appearance in cities.
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Figure 3: Daily temporal distribution of check-ins.

Figure 2 depicts a histogram of check-in frequencies for se-
lected geographic feature types in Whrrl. Our findings con-
firm the power law decay shown in other, non-spatial studies
on collaborative tagging [14]. Please note that due to the
large number of check-ins and unique places most of the 408
types have hundreds or thousands check-ins related to them.
As shown in Figure 2, places with tags such as Restaurants,
Bars or Sports have the highest amount of check-ins. As
Whrrl was based in the US, some types of restaurants are
better represented in the data than others, e.g., Mexican
restaurants or places offering Pizza. The collected data con-
tains numerous linguistic variations, e.g., we have summa-
rized Mexican and the more popular Mex. Besides food and
drinks, e.g., represented by tags such as Wine, Beer, or Cock-
tail, shopping is another important daily activity in Whrrl.
Examples for such places include those tagged with Store,
Electronics, or Furnishings. Finally, travel related terms
such as Outdoors or Hotels form another well represented
group in our dataset. This may be due to the habits of
Whrrl users. Typically, they are interested in documenting

their trip by checking-in at new places while traveling.
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Figure 4: Weekly temporal distribution of check-ins.

Before describing the check-in activities to specific types of
places and how they can by used to distinguish place types,
we need to discuss the overall distribution of check-ins over
days and hours. This is important to show that the patterns
found in the behavior of Whrrl users is representative for
how people interact with Points of Interest. If the crawled
check-in data would not obey common sense, bands and sig-
natures extracted from them would not be meaningful for
tag recommendations or place selection; see section 4. Fig-
ures 3 and 4 provide a general overview of how users inter-
act with places in Whrrl. As depicted in Figure 3, people
interact with places frequently at around noon and in the
evening. Most activities happen between 9am and 11pm,
with two peaks at around 1pm and 7pm. This is due to
the fact that most check-ins are related to restaurants and
food. The check-ins mirror the daily lunch and dinner cy-
cles. A related observation can be made for the weekly data.
As activities related to dining, shopping, and nightlife are
over-represented in the data, we find the highest volume of
check-ins on Fridays and Saturdays; see Figure 4. Overall,
we could not find evidence for distortions in our data as they
would be expected for highly specialized user communities,
e.g., a low number on check-ins during weekdays or high
activities during late evenings.
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Figure 5: Temporal bands of different geographic feature types (weekly band).
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Figure 6: Temporal bands of different geographic feature types (daily band).

3.1 Temporal Band
The primary goal of the presented work is to understand
geographic feature types based on how, i.e., when, people
interact with places of those types. For instance, as dis-
cussed above, people usually go to restaurants at around
noon and in the evening for lunch and dinner, respectively;
while they visit nightclubs during the late evening or night.
We argue that by analyzing the check-in pattern for a specific
place, we can make predictions about its type. We will call
methods to study the temporal dimension of types Temporal-
Semantic Interaction and name different temporal pattern as
temporal bands. While we have shown that temporal data
can be successfully applied to automatically learn feature
types for untagged places [34], we do not argue that one or
more temporal bands will always be enough to distinguish
feature types. To compute unique semantic signature may
require additional bands such as those extracted from ana-
lyzing Spatial-Semantic Interaction; see [24].

Figure 5 plots the weekly check-in patterns to three different
category tags: cocktail, college and party. As can be seen,
cocktail related places are visited during the whole week;
however, they are most frequently visited during the week-
end. For instance, within one month of crawling, we collected
more than twice as many check-ins on Fridays compared to
Mondays. We have observed similar distributions for other
category tags as well, e.g., for the tags Bars and Beer. It
is important to keep in mind that category tags assigned by
volunteers differ from feature typing schemata of professional

authorities. The tag cocktail simply describes those types of
Points Of Interest that serve cocktails.

In contrast to the feature types discussed above, places
tagged as college show a significant check-in decay during
the weekend, i.e., they are weekday features. Moreover, we
can also observe a drop on Fridays which is well known by
faculty members teaching on this weekday. Places tagged by
party do not show such significant patterns. While Satur-
days are preferred and the lowest number of check-ins takes
place on Sunday and Monday, the distribution rather indi-
cates that users also tagged private apartments with party,
e.g., for a birthday party (which can take place during every
day of the week). This example demonstrates that a single
band, in this case the weekly band, may not be sufficient to
identify unique patterns for each feature type.

Therefore, Figure 6 adds the daily check-in patterns for the
three category tags. Users visit places tagged with cock-
tail in the late evening, typically after 6pm. In contrast,
they check-in at colleges during the typical working hours,
i.e., from 9am to 6pm. As depicted in Figure 6c, party re-
lated check-ins take place during the evening, while almost
no check-ins can be observed in the morning. While the num-
ber of total check-ins is low for the party tag in general, the
daily band demonstrates how multiple bands can be used if
a single temporal band does not provide enough discrimina-
tory power. Hence, we argue that multiple temporal bands
can be combined to provide a robust and meaningful descrip-



tions of different geographic feature types.

Finally, while we only investigate the daily and weekly tem-
poral bands here, other bands can be generated from from
seasonal or and even yearly data. However, as our crawling
covers only one month, we do not explore these bands in our
work. Bands can also be combined, e.g., using kernel density
estimation.

3.2 Semantic Similarity
Typically, geographic feature types have been defined in-
tensionally, i.e., by necessary and sufficient conditions for
membership. While more expressive, this approach faces the
problems introduced in section 1. It is unlikely, that a global
and highly heterogeneous community will agree on a set of
characteristics for types such as Bar or College. Studying
the check-in data from Location-based Social Networks, we
have the opportunity to provide an alternative, extensional
approach. We propose to learn the semantics of different fea-
ture types, by taking advantages of massive user behavior –
in this study, their check-ins. However, the lack of declara-
tive knowledge asks for alternative approaches to reasoning
as well. To implement recommendation systems, data clean-
ing, or to integrate data from heterogeneous sources, and as
argued in section 2, we need measures for the proximity of
types. In this section, we devise a new semantic dissimilar-
ity function for geographic feature types, measured based on
the differences of temporal bands.

Let G = {g1, g2, ...} denote the domain of geographic fea-
ture types, where is |G| = 408 corresponds to the number of
different category tags in our dataset. The temporal band
of geographic feature type gi ∈ G is denoted by tbi. Note
that in order to ease the computation of semantic dissim-
ilarity, we propose to unify all the temporal bands of dif-
ferent geographic feature types, i.e., the temporal band is
transformed into a probability density function (called nor-
malized temporal band here). For example, given a geo-
graphic feature type gi, the normalized daily temporal band
is present as tbdi = 〈pi,1, pi,2, · · · , pi,24〉, where

∑24
j=1 pi,j = 1

and pi,j(≥ 0) is proportional to the frequency of check-ins
to the geographic features of type gi at hour jth. Similarly,
we get the normalized weekly temporal band of geographic
feature type gi ∈ G as tbwi = 〈pi,1, pi,2, · · · , pi,7〉, where∑7

j=1 pi,j = 1 and pi,j(≥ 0) is proportional to the frequency
of check-ins to the geographic features of type gi at day jth
of a week.

The semantic dissimilarity function is denoted by
dis-sim(gi, gj) (gi, gj ∈ G) and defined as follows; see
1.

dis-sim(gi, gj) = d(tbi, tbj) (1)

where d(·, ·) denote a function to measure the distance be-
tween two probability distribution, i.e., tbi and tbj .

There are several candidate measures for such distance
function, e.g., Kullback-Leibler divergence, Hellinger dis-
tance, Total Variation Distance, Energy Distance, or Bhat-
tacharyya distance. Among them, Kullbak-leibler divergence
and Hellinger distance are non-symmetric, while the analy-
sis in this paper requires a symmetric semantic dissimilar-
ity function, i.e., dis-sim(gi, gj) = dis-sim(gj , gi). We have

tested Total Variation Distance, Energy Distance, and Bhat-
tacharyya distance, and found that their results are very
close with respect to our data. We will use Total Variation
Distance in our study; see Equation 2.

dis-sim(gi, gj) =
1

2

|tb|∑
k=1

|pi,k − pj,k| (2)

For example, if we have two temporal bands tb1 =
〈0.3, 0.4, 0.3〉 and tb2 = 〈0.2, 0.3, 0.5〉, then the dissimilarity
between g1 and g2 is 1

2
(|0.3−0.2|+ |0.4−0.3|+ |0.3−0.5|) =

0.2.

Whether temporal bands can be used to compute seman-
tic dissimilarity between two feature types depends on the
robustness of those bands. More specifically, the fact that
Friday 11pm is close to Saturday 1am is not modeled in our
approach so far. Consequently, we have to take the circu-
larity of the temporal dimension into account to derive an
appropriate dissimilarity measure. Therefore, we propose a
smoothing function based on a classical moving-window and
kernel approach that operates on the original temporal band
and transforms it in to a more robust form.
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Figure 7: An example for smoothing a temporal
band; in this case the values for Sunday.

For instance, Figure 7 depicts a part of a weekly tem-
poral band together with a 3-cell window and the kernel
〈0.5, 1.0, 0.5〉. The central weight of the window is usu-
ally defined as 1, and the adjacent weight define the de-
gree of smoothing. Higher values increase the impact of
the neighboring days or hours, respectively. Smoothing is
achieved by moving the window step-by-step (i.e., day-by-
day or hour-by-hour) to determine the new value for the
center cell. For example, in Figure 7, the new value for
Sunday is the weighted sum of the original temporal band
after applying the kernel weights. As depicted, the smoothed
value is (5× 0.5) + (7× 1.0) + (6× 0.5) = 12.5.

In the following, we use the geographic feature type sta-
dium for demonstration purpose as it highlights benefits
and shortcomings of our approach at the same time. Ta-
ble 2 shows the top-10 similar geographic feature types to
stadium, where similarity is measured as inverse distance
(sim(gi, gj) = 1−dis−sim(gi, gj)) on the daily band. Com-
pared to the values derived without smoothing, among all
category tags Museums, Live Performance, and Entertain-
ment are considered to be highly similar to Stadium. These
rankings have to be interpreted with care. They do not mean
that museums are similar with respect to specific characteris-
tics, such as building structure, but that Whrrl users interact



original smoothed
GFT dis-sim GFT dis-sim
Arenas 0 Arenas 0
Apparel 0.019 Apparel 0.019
Outdoors 0.062 French 0.019
Beer 0.064 Beer 0.021
Dogs 0.064 Frozen 0.023
Improvement 0.065 Museums 0.024
Frozen 0.070 Rental 0.027
Adult 0.071 Live Performance 0.027
Indies 0.075 Outdoors 0028
Furnishings 0.076 Entertainment 0.030

Table 2: Sorted top-10 semantic dissimilarity scores
between Stadium and other geographic feature types
(GFT) according to their daily bands. The kernel is
set to 〈0.5, 1.0, 0.5〉.

with them at similar times. The Beer tag shows the bene-
fits as well as drawbacks of such an behavioristic approach.
Following an intensional approach to ontology engineering,
beer (related places) would share no (or just a few) charac-
teristics with stadiums. However, people often go to sports
events to drink beer. Therefore, an approach that is based
on user behavior is able to capture such hidden relations. To
a certain degree, stadiums are beer drinking locations.

As argued before, a single band may not be able to discrim-
inate feature type which makes the combination of different
bands necessary. We only consider temporal bands here.
Adding a spatial band improves the rankings by removing
dining places from the stadium list due to their different
distribution in space [24]. Table 3 shows similar geographic
feature types, such as Theaters, Baseball, Sports, Arts, Recre-
ation and Entertainment for the weekly band. All these ac-
tivities/types share a certain weekly pattern with stadiums
and have their peaks during weekends.

In both cases, the smoothed results provide the better re-
sults with respect to common sense – as argued above, a
gold standard is missing. Combining and grouping the re-
sults shows similarities between Stadiums and sports related
places (Baseball, Sports, Recreation, Outdoor) as well as
those providing entertainment (Live Performance, Theaters,
Entertainment, Museums).

3.3 Temporal Analysis of Feature Types
So far, we discussed how temporal patterns from massive
user check-ins can be explored to understand the seman-
tics of category tags assigned for place typing in Location-
based Social Networks. We introduced a moving window
based similarity measure using the probabilistic Total Vari-
ation Distance to compare individual feature types via their
temporal bands. While we will outline how to apply the
results to recommendation services and data cleaning in sec-
tion 4, similarity is restricted to a binary comparison. To
understand the relations between different types, we have to
analyze their temporal clustering patterns as well.

We abstract each feature type to a point in a one-dimensional
space to reveal whether they are clumped, randomly, or reg-

original smoothed
GFT dis-sim GFT dis-sim
Arenas 0 Arenas 0
European 0.019 Live Performance 0.134
Live Performance 0.090 Vegetarian 0.153
Fitness 0.101 Theaters 0.155
Theaters 0.109 Drink 0.173
Drink 0.117 Baseball 0.180
Food 0.119 Sports 0.183
Chefs 0.120 Arts 0.185
Caterers 0.120 Recreation 0.187
Vegan 0.121 Entertainment 0.188

Table 3: Sorted semantic dissimilarity scores be-
tween Stadium and the top-10 geographic feature
types (GFT) according to their weekly bands. The
kernel is set to 〈0.2, 0.5, 1.0, 0.5, 0.2〉.

ularly distributed with respect to other, similar types; com-
pare to our spatial analysis in [24]. We propose a statistics
(called M here) which is inspired by Ripley’s spatial point-
pattern analysis K [26]. Note that the space is constructed
in a relative way, i.e., we can only compute the dissimilarity
score between any two geographic feature types. Therefore,
given a target geographic feature type gi ∈ G, the temporal-
semantic similarity space can be formed by applying Equa-
tion (2) to calculate the dissimilarity scores between gi and
any gj ∈ G. For example, given the target feature type
cocktail, we compute the corresponding space as depicted in
Figure 8. Based on the user check-in behavior, the liquor
category tag is more similar to cocktail than pubs.

cocktail

liquor

party pubs

clubs(similar) (dissimilar)

Figure 8: The ray depicts the distribution of feature
types from similar to dissimilar with respect to the
target type cocktail (dissimilarity = 0 ).

Next, we devise a MSi() function to study the resulting clus-
tering patterns in the space Si for the given target feature
type gi ∈ G; see Equation (3).

MSi(d) = λ−1ESi(d) (3)

ESi(d) is the number of points within distance d to the given
original point (i.e., the target type) in Si, and λ is the in-
tensity, i.e., the expected number of points in a regular dis-
tribution. Figure 9 demonstrates how this statistics can be
inspected to understand the relation between feature types
in Location-based Social Networks. Five geographic feature
types are shown: cocktail, shopping, stadium, food, and bars,
as well as a plot for a regular distribution. At a given dis-
tance d, the higher M(d), the more geographic feature types
are similar to the target type. For instance, there are more
similar feature types to shopping (40% of all types are within
the [0,0.2] similarity interval) than to cocktail (10% in the
same interval). The reason is that our semantic similarity
measure for geographic feature types is defined based on hu-
man behavior, i.e., timestamps from check-ins. Shopping is
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Figure 9: M function calculated based on the
smoothed daily band, with a moving window of
〈0.5, 1.0, 0.5〉.

a more generic activity and can be associated with other
activities such as renting a movie, dining, buying electron-
ics, and so forth. In contrast, cocktail is more specific and
restricted to nightlife; thus, there are not as many similar
geographic feature types. In other words, the patterns gen-
erated by cocktail and related category tags are more unique
in comparison to the other types; many of them show a dis-
tribution in the daily and weekly band that is similar to the
one from shopping.

In the future, we plan to explore methods to discover sub-
sumption relations between feature types to be used in data-
driven ontology engineering.

4. APPLICATIONS
Several applications could benefit from the research on
Temporal-Semantic Interaction in Location-based Social
Networks. For example, service providers could support
users with tag and place recommendations. Moreover, data
in Location-based Social Networks is volunteered, therefore
the data quality is not guaranteed. A better and data-driven
understanding of feature types can foster data cleaning, data
integration, and on the long term also assist in ontology engi-
neering. As argued before, categorization is a key to decision
support and recommendation. In the following, we provide
an overview on how our findings could contribute to such
services.

Tag Recommendation. When users check-in at a place,
they may want to publish their opinions about this place.
Tag recommendations can assist users to assign meaningful
tags that are already circulated. Common algorithms for
tag recommendation are based on the tag usage frequency,
i.e. the most frequently used tag ranks at the top. However,
based on the additional temporal bands, we can make con-
text, i.e., time, driven tag recommendations. Two examples
for new, prototypical recommendation algorithms based on
temporal bands are:

-Temporal Band Similarity. In this algorithm, the feature
type that has the most similar temporal band to the check-
in temporal band of a given place should be ranked top. Let
tb∗ denote the temporal band of check-ins to a given place,
and tbi be the temporal band of check-ins to some specific
geographic feature types gi ∈ G. Then gi will be ranked
higher if the value of dis-sim(tb∗, tbi) is smaller.

-Check-in Probability Maximization In this case, we exploit
the check-in time t of a user to a given place to infer the
probability of a category tag to a place, i.e., Pr(gi|t).

Pr(gi|t) =
Pr(t|gi)Pr(gi)

Pr(t)
∝ Pr(t|gi)Pr(gi) (4)

where Pr(t|gi) can be estimated from the temporal band
corresponding to the geographic feature type gi ∈ G, and the
prior Pr(gi) can be estimated from the raw data. The higher
Pr(gi|t), the higher the corresponding geographic feature
types will be ranked.

Figure 10: Place Selection in the Whrrl Android
application.

Place Selection. To improve the usability of mobile
Location-based Social Network applications, our work could
assist in choosing the user’s current place based on the time
and weekday. When a user want to check-in to some place,
mobile applications usually provide a list of nearby places.
So far, these are ranked according to distances as shown in
Figure 10. Though distance is a good criteria to rank places,
temporal information is also important and instructive to tell
where the user may be. Our study can assist in re-ranking
the candidate places by considering the temporal band. For
example, if a user checks-in at a given place at 1am, we
can to rank places with pubs or nightlife tags higher than a
nearby grocery store. Note that a place may afford multiple
activities and have multiple tags. Formally, we calculate the
check-in probability Pr(pi|t) to a place pi, given the current
time t. The higher Pr(pi|t), the higher the corresponding
place pi will be ranked.

Pr(pi|t) = max
gx∈Gi

Pr(gx|t) (5)

where Gi is the category tag set of place pi, and Pr(gx|t)
can be estimated according to Equation (4).



Data Cleaning. A place may be assigned multiple category
tags by different people. Since the data is volunteer, noise
is very likely, i.e., users may make mistakes when assigning
tags to a place. In general, the temporal bands of places
of the same (or similar) geographic feature types should be
similar as they offer the same activities and share similar
time constraints, e.g., opening hours. However, if such places
show a very distinctive temporal band, the data may have
to be double-checked or cleaned. More formally, given a
place pi and its tags gx ∈ Gi ⊂ G, we define the maximum
dissimilarity among the tags associated with the place as the
clean score (CSi) of the corresponding place,

CSi = max
gx,gy∈Gi

{dis-sim(gx, gy)} (6)

If CSi exceeds a threshold value θ, we would propose to in-
vestigate whether the assigned tags match the place. Larger
θ may pass more noisy data; while smaller θ can improve the
data quality at the cost of high overhead for data reviewing.
In the future, we will use a training dataset to learn a proper
θ for specific category tag combinations.

5. SUMMARY AND OUTLOOK
In this paper, we presented a study on the temporal dimen-
sion of places and their types in Location-based Social Net-
works. Starting from the behavioristic assumption that what
you are can be determined by when you are, we crawled the
Whrrl platform for one month to extract data about users,
places, category tags, and check-in timestamps. For each
of 408 category tags, we investigated two kinds of patterns,
those from differences in the distribution of daily check-in
times and those based on weekly differences. We then ap-
plied a moving window based smoothing to account for the
circularity in temporal data. Next, we introduced a dis-
similarity measure to compare feature types based on the
different check-in distributions by computing the probabilis-
tic Total Variation Distance. To extend our study beyond
binary comparison, we introduce a statistics to visualize the
check-in time-based clustering between different geographic
feature types.

The presented work forms one of three pillars, the others
being spatial [24] and thematic [1], to introduce semantic
signatures as a data-driven methodology to uniquely iden-
tify and distinguish feature types such as Bar or College.
In analogy to multiple electromagnetic bands used for spec-
tral signatures in remote sensing, we showed how temporal
bands can be defined based on the daily and weekly check-
in behavior of Whrrl users. We outline how these bands
and the introduced measures can be used for application ar-
eas such as tag recommendation, place selection, and data
cleaning – all of them being major challenges in research
on Location-based Social Networks, Volunteered Geographic
Information, and Mobile Spatial Decision Support Systems.
We also argued that our methodology can be used to derive
ontological primitives that are directly extracted from obser-
vations, i.e., user behavior. These primitives could be used
to define places based on whether they are weekend, week-
day, evening, or daytime places, instead of defining them in
terms of common characteristics such as walls, tables, chairs,
or menus. This work directly contributes to our work on
Spatial-Semantic-Interaction [24]. Nevertheless, it is impor-
tant to note that we do not aim at replacing intensional,

declarative ontology engineering but propose to combine top-
down with bottom-up approaches. Research on geographic
ontology design patterns will be required to compose such
ontologies out of observation-based primitives.

Temporal-Semantic-Interaction can only set the ground for
further research and a lot of work remains to be done. So
far, we have not decided on how to combine multiple spa-
tial, temporal, and thematic bands to form the envisioned
semantic signatures. Moreover, while we have outlined how
our work supports the introduced application areas, these
services need to be implemented and tested with human par-
ticipants. While we envision to use our findings for data
cleaning in the future, our own bands require cleaning as
well. Volunteered Geographic Information contains noise, is
highly heterogeneous, and inconsistent. In this study, we
deliberately used unfiltered data8 to demonstrate the neces-
sity of multiple bands and smoothing. However, often we
had to rely on common sense as there are no reference sets
or gold standards for non-spatial attributes in VGI. In fact,
our work is intended to set the ground and provide measures
for further studies. It can assist in answering the question
whether a dataset declaring a feature as Bar is more or less
semantically accurate than another dataset tagging the same
location with Nightclub, while, according to ground truth, it
is of type Restaurant. Therefore, the proposed measures are
a way to investigate semantic accuracy in addition to feature
completeness and positional accuracy studied so far. This
will require to further semantify geostatistics.

6. REFERENCES
[1] B. Adams and K. Janowicz. Constructing

geo-ontologies by reification of observation data. In
ACM GIS, 2011.

[2] O. Ahlqvist and A. Shortridge. Characterizing land
cover structure with semantic variograms. Progress in
Spatial Data Handling, pages 401–415, 2006.

[3] L. Backstrom, E. Sun, and C. Marlow. Find me if you
can: improving geographical prediction with social and
spatial proximity. In WWW, pages 61–70, 2010.

[4] L. Barsalou. Situated simulation in the human
conceptual system. Language and Cognitive Processes,
5(6):513–562, 2003.

[5] Z. Cheng, J. Caverlee, and K. Lee. You are where you
tweet: a content-based approach to geo-locating
twitter users. In ACM CIKM, pages 759–768, 2010.

[6] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. In AAAI ICWSM, 2011.

[7] J. Cranshaw, E. Toch, J. I. Hong, A. Kittur, and
N. Sadeh. Bridging the gap between physical location
and online social networks. In ACM UbiComp, pages
119–128, 2010.

[8] P. Diggle, A. Chetwynd, R. Häggkvist, and S. Morris.
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