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ABSTRACT
Semantic similarity measurement has been an active re-
search area in GIScience and the Semantic Web for many
years. However, implementations of these measures were
largely missing, not publicly available, or tailored to spe-
cific application needs. To foster the application of similar-
ity reasoning in information retrieval, ontology engineering,
and spatial decision support, we implemented the SIM-DL
semantic similarity server as well as a plug-in for the popular
Protégé ontology editor. While SIM-DL has been success-
fully applied to several application areas, the implemented
similarity theory was largely structural, could not handle
concept and instance similarity within the same framework,
and was based on a Protégé version and DIG interface that
have been re-engineered over the last years. This paper in-
troduces a new version, called SIM-DLA, engineered from
scratch to addresses these shortcomings. It is based on our
new similarity theory, can handle inter-instance and inter-
concept similarity using the same functions and alignments,
and is available for the new Protégé version 4.1.

Categories and Subject Descriptors
H.2.8 [Database applications]: Spatial databases and
GIS; H.3.3 [Information Search and Retrieval]: Re-
trieval models; I.2.4 [Knowledge Representation For-
malisms and Methods]

General Terms
Measurement

Keywords
Semantic Similarity, Geospatial Semantics, Ontology Engi-
neering, Context, Description Logics

1. INTRODUCTION
Similarity is of fundamental importance for information re-
trieval, e.g., for search engines on the Web. In contrast to
syntactic or statistic measures, semantic similarity compares
the meaning of concepts and has been studied to under-
stand cognition and categorization in cognitive science and
artificial intelligence research. In the case of the Geospatial
Semantic Web, similarity is used for semantic-based geo-
graphic information retrieval [26, 13, 16], ontology match-
ing and alignment [6, 28], concept learning [7], as well as
during ontology engineering [10, 15]. The fact that most
geographic information analysis, e.g. interpolation, kernel
methods, or point pattern analysis, are based on spatial
auto-correlation and spatial distance, shows why semantic
similarity, as analogy to spatial distance, is considered cru-
cial for making ontologies and semantics first class citizens
of GIS and geo-statistics.

While numerous similarity theories have been defined over
the last years, none of them was specifically tailored for rea-
soning over description logics-based ontologies, implemented
as free and open source code, and integrated with major
Semantic Web protocols and tools. For this reason, we de-
veloped the SIM-DL theory together with a similarity server
and a plug-in to access the server’s functionality from within
the popular Protégé ontology editor. The server also imple-
mented the DIG protocol [3] to communicate with other
Semantic Web tools or to be integrated in Web-based ap-
plications. We have applied the SIM-DL server to several
application areas such as information retrieval, spatial de-
cision support, to address semantic heterogeneities between
information communities, and ontology engineering. The
server was also used by other researchers, e.g., to integrate
geospatial information [19].

Nevertheless, SIM-DL had several shortcomings. As a struc-
tural measure, and similar to structural subsumption reason-
ing, the canonization of compared-to concepts played a cru-
cial role and rewriting rules had to be applied before compar-
ison. This approach can be used for various smaller descrip-
tion logics, but fails in case of logics such as SHOIN (D)
underlying OWL-DL. Additionally, SIM-DL was restricted
to inter-concept similarity and singleton classes had to be de-
fined to include instance similarity. Finally, the last version
of SIM-DL was published in 2008 and was not compatible
with new versions of Protégé; the last supported version was
3.3.



In 2009, we have introduced a new similarity theory, called
SIM-DLA[17], that can be used to reason on concepts defined
using more expressive description logics. SIM-DLA reduces
the problem of inter-concept similarity to inter-instance sim-
ilarity and is based on a modified tableau algorithm. In con-
trast to the structural SIM-DL measure, SIM-DLA creates
possible models of a concept, called proxy models, and com-
pares them to the proxy models of other concepts. Those
models can be thought of as representative individuals of
the given concept, but, in fact, the same theory can handle
any individuals stored in the ABox.

In this paper, we present the first implementation of SIM-
DLA as plug-in for the new Protégé 4.1 ontology editor.
While SIM-DLA is not restricted to geo-ontologies, we de-
cided to use an extended version of the hydrology examples
that were introduced to evaluate the cognitive plausibility
of the original SIM-DL. Similarity also plays an increasing
role for Linked Data and SIM-DLA’s ability to combine in-
stance and concept similarity may be useful for work such
as the similarity ontology proposed by Halpin et al. [12]. In
the following, we briefly introduce related research to situ-
ate our work in the literature, highlight the major aspects
of the SIM-DLA theory, explain the implementation, and
discuss application examples. While the theory and imple-
mentation are still under development, a fully operational
version of the plug-in is available as free and open source
software at http://sim-dl.sourceforge.net.

2. RELATED WORK
Due to its analogy to distance in space, semantic similar-
ity has been an active research topic in GIScience for many
years. Starting with the work of Bruns and Egenhofer [5],
researchers have investigated the similarity of spatial scenes
[20, 22], introduced measures to compare concepts specified
in feature-based ontologies [26], or developed measures and
applications that propose a geometric view on semantic sim-
ilarity measurement [25, 1, 27], mostly following Gärdenfors’
work on conceptual spaces [11]. ConceptVISTA was devel-
oped as a knowledge acquisition and management tool which
used semantic similarity for knowledge integration [10].

Besides GIScience, semantic similarity measurement also
plays an important role in bioinformatics, semantic-enabled
information retrieval [18], and ontology matching [28]. A
similarity library, called Simpack, was developed by Bern-
stein et al. [4], while Cruz and Sunna implemented a set
of similarity functions for the alignment of geo-ontologies
[6]. Among many others, similarity measures tailored to the
needs of Web ontologies were also proposed by d’Amato et
al. [7] and Stuckenschmidt [29].

3. SIMILARITY FRAMEWORK
When comparing classes or individuals represented us-
ing description logics (DL), and in contrast to the orig-
inal SIM-DL (cp. [14]), SIM-DLA avoids the prob-
lem of canonization by creating proxy models. Proxy
models represent satisfiable instantiations of a DL class.
For example, a concept EarthSurface equivalent to
WaterSurface t LandSurface would be mapped to
the assertions {WaterSurface(p1), LandSurface(p2),

Figure 1: Completion graph for the simplified
EarthSurface concept.

Watersurface(p3), LandSurface(p3)}.1 In other words,
while most DL reasoners use a tableau algorithm to detect
clashes during satisfiability checking, i.e., they try to create a
contradiction-free model, SIM-DLA uses a modified tableau
algorithm to create a set of models that are representative
for a given class.

Figure 1 shows the completion graph for a simplified
EarthSurface class. The numbered nodes are proxy mod-
els of EarthSurface, while the other nodes are artifacts of
the tableau algorithm. Proxy models may be connected via
binary relations. For instance, model 2 has isComposedOf
relations to the three proxy models 5, 6 and 7. These are,
in fact, mere role fillers of model 2. In contrast, the proxy
models 1, 2, and 3 would be used for comparison against
proxy models derived from another class; in case of match-
ing or similar roles, their fillers would be in turn compared
to those of the EarthSurface proxies.

Each search and target concept generates different proxy
models, computed by the tableau algorithm. Those proxy
models are aligned by the similarity framework within a so
called Model Level Matrix. Depending on the similarity ap-
plication mode [16] the proxy models are selected for com-
parison and the average, minimal, or maximum similarity
is computed. While the basic similarity functions from the
SIM-DL theory [14] are used, the alignment differs. By com-
paring each proxy model resulting from the search concept
with each proxy model of the target concept, an Assertion
Matrix is created for computing the similarity between any
pair combination of proxy models. All similarity values in
the Assertion Matrix are computed by the similarity func-
tions for primitives, i.e. base symbols, and (primitive) roles
as all complex expressions have been unfolded during the
tableau algorithm. The overall similarity between two proxy
models depends on whether a non-symmetric (e.g., for infor-
mation retrieval) or symmetric (e.g., for ontology alignment)
measure is chosen [26, 16].

1Depending on the similarity mode, e.g., non-
symmetric minimal similarity, the assertions would
have to be {WaterSurface(p1), ¬LandSurface(p1),
LandSurface(p2),¬WaterSurface(p2), Watersurface(p3),
LandSurface(p3)}. A detailed discussion of the semantics
of similarity and differences between modes is given in [16].

http://sim-dl.sourceforge.net


4. IMPLEMENTATION
The SIM-DLA framework has been implemented in Java and
extends the OWLReasoner interface, specified by the OWL-
API (for OWL 2.0)2. We extended the interface by a method
for computing similarity among concepts and/or individuals.
For reasons of performance standard methods, for instance,
such as satisfiability checking are delegated by default to the
the Pellet OWL2 reasoner 3 or any other delegated OWL-
Reasoner of choice. The similarity method provides access to
the novel implementation of the SIM-DLA algorithm which
mainly consists of the modified tableau algorithm and the
alignment framework (section 4.3). While implementing the
OWLReasoner interface, the SIM-DLA framework can eas-
ily be invoked as a OWLReasoner in any application built
upon the OWL API. Furthermore, the OWL-API is capable
of integrating description logics and Linked Data through
RDF-OWL mappings that are performed in both directions.

As in a previous release, the SIM-DLA framework has been
integrated and deployed as a plug-in for the Protégé ontol-
ogy editor and knowledge acquisition system4 (section 4.4).
Hence, it can easily be used and integrated in to tasks such
as ontology engineering [15] as well as for populating and
maintaining instance-level data.

In this section we highlight selected implementation details
that are relevant for the understanding of the similarity en-
gine and functionality offered by the plug-in. The SIM-DLA

theory has been explained in [17]; however, we do introduce
some minor modifications here to address previous short-
comings.

4.1 Search and Target Entities
While SIM-DL was limited to inter-concept similarity, SIM-
DLA can also handle inter-instance similarity. This requires
some changes to the underlying context theory and the user
interface. In case a concept is selected for comparison, it
is internally rendered (section 4.2) into a string represen-
tation. During the rendering process complex concept def-
initions are rewritten and unfolded to primitives and logi-
cal connectives. The rendered expressions serve as a start-
ing points for the tableau algorithm which produces proxy
models. Instead of explicitly specifying target concepts to
be compared, a context concept CC can serve as a input to
restrict the application domain; see [16, 26] for details. In
this case, the search concept will be compared against all
concepts subsumed by the context concept CC . In case of
inter-instance similarity, instances (as sets of assertions) are
directly mapped to a proxy model representation, due to the
fact that an individual already embodies one possible instan-
tiation of a known or unknown class. During the alignment
(section 4.3) the proxy models are selected for comparison
and different similarity functions are applied.

4.2 Rendering
Axioms in the OWL API appear as nested Java objects.
The original SIM-DL server was also implemented following
rigid principles of object-oriented design. However, due to
the high number of nested lists (and deep cloning) necessary

2http://owlapi.sourceforge.net/
3http://clarkparsia.com/pellet/
4http://protege.stanford.edu/

for the tableau implementation, this resulted in a high num-
ber of objects and nested loops. For instance, intersection
was modeled as a Java class connecting two other expres-
sion (as objects), which could be complex again. Hence,
each individual intersection object had to be unfolded, i.e.,
the first and second object had to be accessed and poten-
tially unfolded again. Therefore, we decided to take a radi-
cally different solution for the re-implementation and ren-
der those objects as strings of terms with a syntax that
allows sub-term access without any kind of explicit refer-
ences. For example, a concept Channel that is equivalent to
NavigableuWatercourseu¬Artificialu∃meets.Landmass
would be rendered to !I Navigable !I Watercourse !I %N
Artificial !E meets Landmass. The internal structure of
the Channel class is determined by counting one- (’%’) and
two-valued (’ !’) operators. By recursively unfolding all con-
cepts down to primitives without subclass and equivalence
relations, there is no need for OWL API access during the
execution of the tableau algorithm and the number of Java
objects is greatly reduced. The only connection to the orig-
inal OWL representations is a reasoner that is employed by
the tableau to query sub- and inverse property axioms, that
are not part of the concept definitions as such. Since recur-
sive definitions, i.e., a concept appears in its own (nested)
definition, are caught during the rendering process, that case
has not to be considered by the blocking mechanism of SIM-
DLA anymore.

When rendering individuals no tableau has to be employed
and consequently no string representation has to be created.
Instead we directly map to the same proxy model represen-
tation that is also the result of the tableau. By doing so, it is
possible to compare individuals with concepts and compute
what might be considered the prototypicality of an individ-
ual. For individuals, we render the class it instantiates (and
the super classes) and property assertions. In addition we
record the individual’s URI to check for identity.

4.3 Alignment
The alignment phase compares proxy models, i.e., their as-
sertions, from the source concept to those of the target con-
cepts; or, in case of inter-instance similarity, the compared-
to source and target instances. Based on the selected sim-
ilarity mode, the alignment phase also determines which
compared pairs will be used for the final similarity com-
putation and how normalization will be handled. For in-
stance, non-alignable [21] assertions from the target concept
do not reduce a maximum, non-symmetric similarity as used
in semantic-based information retrieval. More details on the
alignment process are given in [17].

4.3.1 Model Level Matrix - Selecting proxy models
for overall similarity comparison

The alignment process is twofold. In a first step an empty
Model Level Matrix MM is built, where all proxy models
of the search entity (columns) are compared against each
proxy model of the target entity (rows). In a second step,
for each proxy model comparison a Assertion Matrix MA

is created to compute the similarity between proxy models.
The resulting proxy model similarity will be entered into
the Model Level Matrix. Depending on the application con-
text, the user can choose whether the average, minimum, or



the maximum similarity should be selected for comparison,
as the matrix contains all possible similarity combinations
of proxy models. For average similarity the mean of each
column is used for computing the standardized sum, while
for minimum or maximum similarity, the highest (or lowest,
respectively) value out of all columns is used.

4.3.2 Assertion Matrix - Computing similarity be-
tween two proxy models

Each proxy model consists of a list of primitive concepts and
roles. As we map individuals directly to proxy models in the
rendering process, we keep their URI for identity checking.
During the alignment process, the Assertion Matrix is built
by comparing all concepts and roles (plus their fillers) of one
proxy model PA against those from proxy model PB . In case
two primitive concepts are compared, a modified version of
the Jaccard Similarity Coefficient is applied. It measures
the degree of overlap between two sets S1 and S2 as ratio
of the cardinality of shared members in all complex concept
definitions from S1 ∪ S2 to the cardinality retrieved from
S1∩S2. In other words, the more frequently two primitives
co-occur in complex concept definitions, the more similar
they are. For formal details we refer to [17]. When com-
paring roles, also their role fillers are compared. Therefore,
two different similarity functions are applied one for roles as
well as their fillers. Fillers, such as px in meets(p1, px) are
recursively defined and represented again as proxy models,
e.g., Landmass(px). For each filler comparison a new As-
sertion Matrix is created. Since a multiplicative approach
has been adjudged to be cognitive plausible [16], the overall
similarity of two roles-filler pairs is defined as the product
of the role similarity and the filler similarity.

Because SHI supports role hierarchies but does not sup-
port role intersections or compositions, the Jaccard Coef-
ficient cannot be used as a measure of similarity between
roles.5 As proposed in previous work [17], a network-based
approach is used instead. Therefore, the similarity between
two roles is defined as the ratio between the shortest path
from role R1 to R2 and the maximum path within the graph
representation of the role hierarchy; if the path leads over
the universal role U , similarity is set to 0 [16]. SIM-DLA

uses a weighted version of Rada’s network similarity [24] by
which roles that are on a deeper level of the role hierarchy
are more similar to each other; details are given in [17]. In
case of roles from temporal [9] or conceptual neighborhood
graphs [5], the hierarchy of the respectively graph is used
(without a weighting).

4.4 SIM-DLA Protégé Plug-in
Protégé is the most common graphical user interface for the
construction of Web ontologies and can be extended by var-
ious plug-ins. The old SIM-DL Protégé plug-in has been re-
engineered to support the latest version of Protégé. While
Protégé 3.x did not provided native support for OWL (only
via a plug-in), Protégé 4.1 is fully built upon the OWL-
API following the OWL2 specification. Besides some minor
changes, most of the interface elements and options of the

5The current SIM-DLA theory and implementation have
been developed for the SHI description logics but can be ex-
tended by qualified number restrictions and other language
features in the future.

initial SIM-DL plug-in have been transferred to the new in-
frastructure. In Protégé 4.1, all UI elements are fully cus-
tomizable and different views can be combined in arbitrary
ways.

Therefore, the SIM-DLA plug-in has been implemented as
a view and can be combined with the class hierarchy view
(Fig.2-1) or an individual view (Fig.2-2). Since the plug-
in adapts the new look & feel provided by Protégé 4.x, the
user can simply define the search entity as well as the tar-
get entities (or the context concept) using drag and drop.
To do so, they can be selected from the class or individ-
ual view and dropped in to the according fields (Fig.2-3).
The different similarity modes can be selected in the appli-
cation context panel and the user can choose how the results
should be visualized, e.g., as ordered list (Fig.2-4), using a
font-size scaling visualization known from tag clouds, or by
categorization into n categories. The user can also provide a
prediction of expected similarity values. This feature can be
used to evaluate the ontology against human similarity rat-
ings and has been applied as a proxy for fitness for purpose
in ontology engineering [15].

5. EXEMPLARY APPLICATION
At its core SIM-DLA always computes inter-instance sim-
ilarity. When inter-concept similarity is requested, proxy
models are created by the modified tableau algorithm as a
prerequisite for similarity measurement. Consequently, the
new plug-in supports inter-concept, inter-instance, and even
concept-to-instance similarity in different similarity modes
and context settings; see [16] for different kinds of con-
texts and their impact on semantic similarity. We provide
a simplified example of inter-concept similarity and its ap-
plication in subsection 5.1. Subsection 5.2 describes inter-
instance similarity and deals with those applications that are
enabled by similarity measurement on the assertion level.
Note that inter-instance similarity is heavily domain spe-
cific. SIM-DLA provides the basic framework for measuring
inter-instance similarity but cannot provide specific similar-
ity functions for all different kinds of applications. These
additional functions can be added by others. For instance,
edit distance functions may be included to compare names of
water bodies, while other measures may be used to compare
pH-levels, and so forth.

5.1 Inter-Concept Similarity
Related work has shown that inter-concept similarity en-
hances search for spatial entities as well as communication
about spatial concepts. Search results cannot only be ranked
by spatial but also by semantic distance. For instance, the
search for an instance of type River might not only return
nearby instances of exactly the same type but also instances
of type Stream, Channel or Canal (cp. figure 2); see [16] for
implementation in to digital gazetteer user interfaces. Inter-
concept similarity may also serve as an indicator for agree-
ment or disagreement between domain experts [15]. For the
example given in figure 2, it can be assessed from the font
sizes of concept names (or directly via the similarity val-
ues) which concepts in the Navigable context6 are similar to

6In the presented example, setting the context concept to
Navigable only compares those concepts to River that are
subclasses of Navigable.



Figure 2: A similarity request from the Protégé SIM-DLA plug-in for the concept River in the Navigable
context. Results are rendered as a font-size scaling cloud in the upper right corner. The respective similarity
values are: Stream 88.89, Canal 70.24, Channel 63.89, Lake 50.51, Reservoir 41.72, Ocean 40.4 and can be
accessed using the Results tab.

River, that is, Stream, Canal, Channel, and which are rather
dissimilar to River, such as Lake, Reservoir, and Ocean. In-
stead of browsing through the ontology to search for the
most influential commonality[26] factors, these can be as-
sessed from the visualized similarity ranking. For instance,
in figure 2 it is linearity and not the artificial vs. natural
distinction that separates River from other concepts, e.g.,
Lake. The similarity mode (non-symmetric vs. symmetric
as well as minimum, maximum, and average similarity) can
be accessed using the Application Context view.

Users interested in the technical aspects of SIM-DLA might
want to examine how and which proxy models were created
by the modified tableau algorithm. Figure 3 shows the com-
pletion graph for the concept River with six proxy models in
total. This visualization is also essential for debugging the
implementation, testing the theory, and understanding the
alignment process. The graph visualization can be activated
using the checkbox in the Protéǵe plug-in; see figure 2.

5.2 Inter-Instance Similarity
Measuring similarity between instances can be done for a
multitude of reasons. For instance, it could be used in the
Linked Data cloud to relate individuals, or to aggregate
Linked Sensor Data [23]. Methods such as string match-
ing have strong limitations due to their disregard of seman-
tics. Finding correspondents for individuals that lack cer-
tain properties or identifiers may help to semi-automatically
interlink data.

In the simplified example depicted in table 1, an unknown
individual (“UnknownRiver”) is compared to a set of existing

Name/ID Assertions

Ems River(Ems)
inside(Ems,Germany)
hasDestination(Ems,NorthSea)

Mosel River(Mosel)
hasDestination(Mosel,Rhine)
inside(Mosel,France)
inside(Mosel,Germany)

Rhine River(Rhine)
hasDestination(Rhine,NorthSea)
inside(Rhine,Netherlands)
inside(Rhine,Switzerland)
inside(Rhine,Germany)

DortmundEmsCanal Canal(DortmundEmsCanal)
connectedTo(DortmundEmsCanal,Ems)
connectedTo(DortmundEmsCanal,RhineHerneCanal)

RhineHerneCanal Canal(RhineHerneCanal)
connectedTo(RhineHerneCanal,Rhine)
connectedTo(RhineHerneCanal,DortmundEmsCanal)

NorthSea Ocean(NorthSea)

France AdministrativeArea(France)

Netherlands AdministrativeArea(Netherlands)

Switzerland AdministrativeArea(Switzerland)

Germany AdministrativeArea(Germany)

UnknownRiver River(UnknownRiver)
hasDestination(UnknownRiver,UnknownRiver2)
inside(UnknownRiver,France)
inside(UnknownRiver,Germany)

UnknownRiver2 River(UnknownRiver2)
hasDestination(UnknownRiver2,UnknownOcean)
inside(UnknownRiver2,Germany)

UnknownOcean Ocean(UnknownOcean)

Table 1: Assertions in the hydrography use case.

individuals that use a shared vocabulary. To demonstrate
how SIM-DLA can be applied in such a setting, “Unknown-



Figure 3: Completion graph of the concept River. All equivalent and superclass(es) of River are rendered
in the top proxy model. Outgoing from this one, four first-level and one second-level proxy model(s) are
expanded through existential quantification. Apart from the common DL notation we use the apostrophe
sign to indicate primitiveness, i.e., C v A can be rewritten to C ≡ A u C′.

Figure 4: Visualized result set from the hydrography
use case in the Protégé SIM-DLA plug-in. The (sym-
metric) similarity values corresponding to the font
sizes for individual “UnknownRiver” are: “Mosel”
93.33, “Ems” 80, “Rhine” 66.67, “Dortmund-Ems-
Canal” 10, “Rhine-Herne-Canal” 6.67, “NorthSea”
0.

River” is simply a partial copy of the individual “Mosel”.
This reflects the situation were two Linked Data sets should
be interlinked and may store partial information about the
same entities. The results (cp. figure 4) exhibit a strong
influence of the geographic feature type on similarity, since
River instances are ranked the highest among all hydro-
graphic features in scope. Still SIM-DLA manages to distin-
guish between instances of the same type (“Mosel”, “Ems”,
“Rhine”) by accounting for roles, role filler types, and URIs.
As described before, the current implementation does not
provide any application specific similarity functions as these
have to be added by application developers. Therefore, SIM-
DLA would not be able to compute partial matches for the
names of waterbodies, e.g., using edit-distance, nor use spa-
tial distance based on the geometric representations of the
features.

6. CONCLUSIONS AND FURTHER WORK
In this paper, we motivated the need for a new semantic
similarity reasoner, introduced the SIM-DLA plug-in for the
Protégé ontology editor, explained relevant implementation

details, and highlighted application areas by providing ex-
amples. While the server and similarity theory are still un-
der development, they are already more flexible and offer
new possibilities compared to the initial SIM-DL similarity
server. The presented implementation is operational and
can be downloaded and used within Protégé.

SIM-DLA implements a rudimentary syntactic similarity
fallback mode for unknown language constructs. How-
ever, this mode can only distinguish between a full
match and no match and is used to handle ontolo-
gies which use more expressive description logics than
SHI. For instance, two qualified number restric-
tions such as (≥ 1 hasDestination.Waterbody) can be
matched but (≥ 1 hasDestination.Waterbody) and (≥
2 hasDestination.Waterbody) would produce no match.
The required similarity functions were already introduces for
SIM-DL but have not been implemented for SIM-DLA so far.
This would require further modifications to the tableau. For
instance, the algorithm should not generate infinite proxy
models for a minimum qualified number restrictions, and so
forth. While recent research indicates [2] that expressivity is
not necessarily the most important criterion and many suc-
cessful large-scale ontologies rely on languages such as EL
(which can be handled by SIM-DLA), support for OWL-DL
would be a very important step for the acceptance of our
work by a larger community.

While similarity is at the core of most work on ontology
alignment [8] and also implemented in semantic-based infor-
mation retrieval interfaces [18], it is still not very popular
in the broader Semantic Web community. We believe that
Linked Data and an increasing number of small, application-
driven ontologies will boost the acceptance and need for sim-
ilarity reasoning and the provided relevance ranking. By us-
ing reification or thresholds, it could be applied to compute
the similarity relations proposed by Halpin et al. [12] and,
hence, go beyond (mis)using owl:SameAs.

The DIG protocol[3] for DL reasoners used by the initial



SIM-DL has been deprecated. Therefore, we plan to re-
lease an implementation of the new SIM-DLA reasoner as
a OWLLink server7 on top of the OWL API and, thereby,
make it usable outside of Protégé.
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