
Semantic Web 0 (2012) 1–0 1
IOS Press

Geospatial Semantics and Linked
Spatiotemporal Data – Past, Present, and
Future
Editorial

Krzysztof Janowicz a, Simon Scheider a, Todd Pehle b, and Glen Hart c

a University of California, Santa Barbara, USA
b Orbis Technologies, USA
c Ordnance Survey, UK

Abstract. The Geosciences and Geography are not just yet another application area for semantic technologies. The
vast heterogeneity of the involved disciplines ranging from the natural sciences to the social sciences introduces
new challenges in terms of interoperability. Moreover, the inherent spatial and temporal information components
also require distinct semantic approaches. For these reasons, geospatial semantics, geo-ontologies, and semantic
interoperability have been active research areas over the last 20 years. The geospatial semantics community has
been among the early adopters of the Semantic Web, contributing methods, ontologies, use cases, and datasets.
Today, geographic information is a crucial part of many central hubs on the Linked Data Web. In this editorial,
we outline the research field of geospatial semantics, highlight major research directions and trends, and glance at
future challenges. We hope that this text will be valuable for geoscientists interested in semantics research as well
as knowledge engineers interested in spatiotemporal data.

Introduction and Motivation

While the Web has changed with the advent of
the Social Web from mostly authoritative content
towards increasing amounts of user generated in-
formation, it is essentially still about linked doc-
uments. These documents provide structure and
context for the described data and easy their in-
terpretation. In contrast, the evolving Data Web is
about linking data, not documents. Such datasets
are not bound to a specific document but can be
easily combined and used outside of their origi-
nal creation context. With a growth rate of mil-
lions of new facts encoded as RDF-triples per
month, the Linked Data cloud allows users to
answer complex queries spanning multiple, het-
erogeneous data sources from different scientific

domains. However, this uncoupling of data from
its creation context makes the interpretation of
data challenging. Thus, research on semantic in-
teroperability and ontologies is crucial to ensure
consistency and meaningful results. Space and
time are fundamental ordering principles to struc-
ture such data and provide an implicit context
for their interpretation. Hence, it is not surpris-
ing that many linked datasets either contain spa-
tiotemporal identifiers themselves or link out to
such datasets, making them central hubs of the
Linked Data cloud.

Prominent examples include Geonames.org as
well as the Linked Geo Data project, which pro-
vides a RDF serialization of Points Of Interest
from Open Street Map [103]. Besides such Volun-
tary Geographic Information (VGI), governments
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and governmental agencies recently started to de-
velop geo-ontologies and publish their data as
Linked Spatiotemporal Data [54]. Examples in-
clude the US Geological Survey [107] and the UK
Ordnance Survey [41]. Furthermore, myriad other
Linked Data sources contain location-based refer-
ences. For instance, a dataset from the digital hu-
manities may link information about exhibits to
places and their historic names [76]. Following out-
going links, scholars can explore these places and
learn about events which took place there. This
historic events dataset may in turn link to informa-
tion about physical objects and actors that were
involved in these events.

To query data across different data sources re-
quires information about the intended meaning of
the used terms. In the example above, the datasets
may use the CIDOC conceptual reference model
[28] as a common top-level ontology that defines
terms such as event or participatesIn. On the do-
main level, researchers have proposed ontologies,
e.g., for Geology [17], that enrich top-level ontolo-
gies such as DOLCE with domain specific facts.
However for highly heterogeneous domains and
interdisciplinary research, dealing with geospatial
data as well as establishing and maintaining such
top-level and domain-level ontologies may turn out
to be difficult or even impossible. Therefore, a ma-
jor challenge of semantic research in the context
of Linked Data lies in exploiting semantic hetero-
geneity, instead of resolving it [52].

Datasets and ontologies are just two compo-
nents of the Geospatial Semantic Web [30]. The
formal semantics defined for knowledge represen-
tation languages such as the Web Ontology Lan-
guage (OWL) support reasoning services that can
make implicit facts explicit, discover incompati-
bilities, improve retrieval beyond keyword search,
and provide the framework for complex integrity
constraint checking that reduces the risk of com-
bining incompatible data and models. Finally, all
of this would be of little use if not supported by
semantics-driven user interfaces and novel inter-
action paradigms that support the exploration of
data, models, and services.

In the following we outline the research field of
geospatial semantics, sketch its major research di-
rections so far, and highlight future challenges. We
hope that this overview will be valuable for geosci-
entists interested in semantics research as well as
knowledge engineers interested in the geosciences.

Geospatial Semantics in a Nutshell

Geospatial semantics is a research area combin-
ing Geographic Information Science (GIScience),
spatial databases, cognitive science, Artificial In-
telligence (AI), and the Semantic Web [65]. It ad-
dresses the meaning of digital referents at a geo-
graphic scale, such as places, locations, events, and
geographic objects in digital maps, geodatabases,
and earth models. Geospatial semantics uses a va-
riety of methods ranging from top-down knowl-
edge engineering and logical deduction to bottom-
up data mining and induction. It integrates knowl-
edge engineering with methods specific to GI-
Science, such as spatial reference systems and
spatial reasoning. It also extends methods that
originated in cognitive science such as semantic
similarity and analogy reasoning, e.g., to enable
semantics-based geographic information retrieval
[53]. Often, geospatial semantics combines work on
conceptual modeling and geo-ontologies with spa-
tial statistics, e.g., to study land cover [4].

The semantic interpretations of geographic in-
formation can differ considerably, which frequently
causes misunderstandings when using and combin-
ing data and services on the Web. A well stud-
ied example are Web services that provide sensor
data, e.g., from weather stations. For instance, in
order to simulate the spread of a toxic gas plume,
two different services may be queried for wind di-
rection measurements. Both services may be syn-
tactically comparable in that they return a string
called wind direction as output together with an
integer ranging from 0 - 360◦. Nevertheless, both
services can have contradicting semantic interpre-
tations of what the returned values refer to: wind
blows to or wind blows from. Thus, sending both
values to an evacuation simulation running on a
Web Processing Service (WPS) will yield mislead-
ing results [88]. Other examples include differ-
ent and evolving conceptualizations of land cover
types in the context of the Kyoto protocol [35]
as well as geographic feature types such as forests
or Points Of Interest. Besides challenges arising
from integrating heterogeneous data and combin-
ing services, data-model intercomparison plays an-
other crucial role [82]. Finally, time and the re-
sulting change is another challenge that has to be
taken into account. Most concepts are not static
but evolve over time or are even dynamically re-
defined. For the long term preservation and main-
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tenance of data and ontologies this leads to re-
search challenges such as how to handle semantic
aging [97].

One can distinguish two major strands of sci-
entific thought in geospatial semantics, by anal-
ogy with Kuhn’s [69] distinction between model-
ing vs. encoding on the Semantic Web. One is con-
cerned with the design task of semantic modeling.
It addresses the problem how geographic informa-
tion should be modeled in an information ontol-
ogy, i.e., which relations and classes are useful in
order to discover, capture and query the mean-
ing of spatiotemporal and geographic phenomena.
Examples include work on geospatial ontology en-
gineering [34,13,60] and the formalization of spa-
tial reasoning [22]. Spatial relations allow querying
and localizing complex geometrical objects, such
as cities or buildings, relative to other referents,
such as countries and roads [56]. It was recognized
early that such queries need to deal with indeter-
minate boundaries of geographic objects [19]. This
research strand goes back to a tradition of work
on spatial representations and operations in Geo-
graphic Information Systems (GIS) [20] as well as
on integrity constraints in spatial databases.

Another strand is concerned with the task of
semantics-based search, integration, and interop-
erability of geo-referenced information, as dis-
cussed in the examples before. It addresses the
problem of how geographic referents can be seman-
tically linked to other kinds of information with
related meaning. Due to the vast heterogeneity of
geo-data and models spanning fields such as hu-
man and cognitive geography, ecology, economics,
geology, climatology, oceanography, transporta-
tion research, and so forth, integration and shar-
ing of georeferenced information requires methods
to ensure semantic interoperability [43]. Addition-
ally, geographic information frequently needs to be
represented on different levels of abstraction, scale,
and granularity [32], and can be inherently vague
and uncertain [11]. This creates another source
of interoperability problems. An important chal-
lenge of semantic linking is how geospatial refer-
ents, such as events and places, can be automat-
ically discovered in data sources which are not
linked or georeferenced. Recent examples for work
on querying includes GeoSPARQL as a common
query language for the Geospatial Semantic Web
as well as triple stores that can effectively handle
and index Linked Spatiotemporal Data [9]. Other

work along these lines also addressed the role of se-
mantic similarity for spatial scene queries [83,71].

Major Research Directions

In the following, we give a brief introduction into
some of the major research topics in geospatial
semantics and related areas.

Geo-Ontology Engineering

Geographic information deals with a variety of
phenomena on a certain range of spatial scales.
Even though geographic referents are rooted in di-
verse domains, they share certain semantic char-
acteristics and principles that can be exploited
in common approaches towards designing geo-
ontologies. For example, such ontologies should
support access to phenomena on flexible resolution
levels and scales [8]. They also have to deal with
the various natures of spatial boundaries [102]. Ex-
amples for top-level geo-ontologies that incorpo-
rate the principle of spatial granularity include the
work of Bittner et al. [13]. Usually, such founda-
tion ontologies are extended by domain ontologies,
e.g., the SWEET ontology for earth and environ-
mental science [89].

However, in recent time, it has become apparent
that geographic concepts are situated and context-
dependent [15], that they can be described from
different, equally valid, points of view [51], and
that ontological commitments are arbitrary to a
large extent [93]. This makes standard compre-
hensive approaches towards ontology engineering
more likely to fail. Semantic engineering, however,
may be slightly redefined, namely as a method
of communicating possible interpretations of data
terms by constraining them towards the intended
ones [68], without prescribing ontological com-
mitments. For example, so-called ontology design
pattern have been proposed and implemented as
modular, flexible, and reusable building blocks (or
strategies) that support engineers and scholars in
defining local, purpose-driven ontologies [37]. An-
other approach is based on grounding vague terms
with possibly multiple meanings [12]. Additionally,
one can also engineer ontologies in a layered fash-
ion [34,25]. Such a layered approach can start with
observation procedures on the bottom level and
then provide deductive and inductive methods to
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arrive at more abstract but reproducible ontolog-
ical categories [51].

Semantic Reference Systems

In its most basic definition, geographic informa-
tion contains a spatial, a temporal, and a thematic
component [20]. The usefulness of geographic in-
formation lies, to large extent, in the availability
of reference systems for the precise semantic inter-
pretation of these components. Spatial reference
systems provide the formal vocabulary to calculate
with precise locations, e.g., in the form of points
on a mathematical ellipsoid, as well as with their
meaning in terms of technical operations. The lat-
ter are given in terms of geodetic datums, i.e.,
standard directions and positions of the ellipsoid,
which allow interpreting locations as results of re-
peatable measurements on the earth surface. Both
is required to make sense out of spatial data. Tem-
poral reference systems, such as calendars, simi-
larly handle the representation of time, and allow
to translate between different calendars. The the-
matic (also called attributive) component of geo-
graphic information requires reference systems as
well [20]. In analogy, Kuhn proposed the general-
ized notion of Semantic Reference Systems (SRS)
[64], which enable a precise interpretation of all
components of geospatial data in terms of mea-
surement scales and observation procedures. For
example, attribute values such as the wind direc-
tions discussed before can be interpreted in terms
of reference systems for cardinal wind directions
and anemometers. Establishing such SRS, their
standard operations as well as their formal vocab-
ularies, is an ongoing research topic [87,93,68], and
has been named among the most important and
challenging projects of GIScience [78].

Semantic Primitives and Information Grounding

Related to SRS is the problem on which level of
abstraction a geospatial dataset can be semanti-
cally described in order to convey its meaning and
to compare it with other datasets. As discussed
above, geospatial ontologies reflect different world
views on different levels of abstraction for good
reasons. However, in order to compare and link
them, one needs a common semantic plane. What
are the basic concepts on which the primitive no-
tions in a geospatial ontology should be founded?

What are useful cognitive abstractions that can be
reused across different ontologies? What are use-
ful semantic backgrounds that enable comparison
of different ontologies and conceptualizations with
each other?

One approach towards geospatial semantic
primitives is based on spatial cognitive schemas.
For example, Johnson’s [55] image schemas,
such as container, or path, are cross-domain ab-
stractions (i.e., conceptual metaphors) underly-
ing many different kinds of geographic data such
as road networks or administrative boundaries.
Thus, they can be used for designing core con-
cepts in geospatial ontologies [66]. Lynch’s ur-
ban patterns [75] and Alexander’s design patterns
[6] may be seen from a similar angle. Likewise,
Gärdenfors’ notion of cognitive categories as con-
vex regions in a conceptual space [38] is a cogni-
tive schema that can be exploited for comparison
of geospatial concepts [90,2].

Another approach acknowledges that cognitive
concepts are themselves abstractions and, thus,
in need of grounding in the sense of Harnad
[42]. Geographic information concepts may be
grounded in terms of embodied perceptual rou-
tines, perception-action cycles, and situated simu-
lations [7]. Perception-action cycles underlie Gib-
son’s meaningful environment and his central no-
tion of affordance [39]. Both can be used to under-
stand geographic media, such as road networks, in
terms of the kinds of actions they afford [95,96].
More generally, it is possible to understand the
meaning of geographic information in a pragmatic
sense [14], e.g., in terms of repeatable actions
taken to generate a dataset [93], as well as in a
teleological sense, i.e., in terms of the underlying
purpose [25]. Relevant actions may involve cogni-
tive constructions, which account for abstract no-
tions, as well as perceptual operations, which allow
humans to reliably simulate and predicate some
phenomenon in jointly observable environmental
scenes [93].

Event Discovery and Spatiotemporal Ontologies

Geographic information is inherently temporal
in the sense that geographic assertions, such as
partonomic relations between administrative re-
gions or the membership in organizations, are valid
only over a certain period [59]. Consequently, re-
search investigates how this temporal dimensions
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can be brought into geospatial data. This is es-
pecially crucial for the integration of Linked Data
on the Web. To give a concrete example, problems
arise when administrative regions are linked via
OWL:sameAs, and their properties, such as popu-
lation numbers, are not temporally indexed, e.g.,
via blank nodes.

Over the last years a multitude of work on spa-
tiotemporal modeling, temporal GIS [21], and sim-
ple temporal gazetteer models [47] has been pub-
lished. Research also addressed event ontology de-
sign patterns [110]. However, a particular chal-
lenge remains the automated detection of events
from observation data on a geographic scale [10],
such as rainstorms or blizzards [27]. Examples of
work on geographic event detection and identi-
fication algorithms include the work by Agouris
and Stefanidis [3]. Nonetheless, there remain open
questions. For example, regarding general formal
and computational procedures of geographic event
detection, concerning the tight coupling of geospa-
tial ontologies with detected events, as well as the
triggering of data and ontology updates by au-
tomatically detected events [72]. These challenges
are reflected, to some extent, in ontological ques-
tions about the relationship between processes, ob-
jects, and events [36].

Places and Trajectories

Place is the human way to understand and refer
to space, and it goes well beyond geographic coor-
dinates. Locations as simple coordinates are point-
like, ubiquitous and precise. In contrast, places
are not point-like and have fuzzy boundaries de-
termined by physical, cultural, and cognitive pro-
cesses [106,81]. Furthermore, places, such down-
town, can change their locations over time, just
like physical objects [59]. In consequence, locations
only insufficiently capture the identity and mean-
ing of places.

So far, research in GIScience and geospatial
semantics has been focusing on three major di-
mensions. Fist, the formalization of place [40],
place data models [47], and place ontologies [1],
in order to improve geographic information re-
trieval [57,74,53]. A promising direction of fur-
ther research are affordance-based approaches to-
wards place [58]. Second, the automated discov-
ery of places, in order to enrich data with geo-
references. A traditional direction of research is

geoparsing, i.e., the discovery of places in texts by
NLP methods, which can be also used to identify
place-related activities [5]. Recently, due to new
technologies, research has focused on the discov-
ery of places and user activities by mining (seman-
tic) trajectories [112], which has also a tradition
in ubiquitous computing [46]. Research also inves-
tigated how to reconstruct the spatial footprint of
places based on geotags in social media, such as
Flickr [49]. In the age of Big Data, semantic inte-
gration will allow researchers to combine data from
heterogeneous sources to gain a more holistic un-
derstanding of places by studying location-based
social networks, different types of volunteered ge-
ographic information, authoritative data from the
ground and via remote sensing, and many other
data sources. Third, novel research addresses the
design of place-based information systems [40] in
which traditional operations and methods of GIS
need to be redesigned to cope with places as ref-
erents. Geographic feature type ontologies are a
central part of this vision.

Sensor and Observation Semantics

Naturally, observations play a key role in the
geosciences, and, thus, also the involved sensors.
In order to describe the origin and provenance of
geodata, well-designed ontologies about sensors,
observation, and measurement are necessary [67].
The so-called Semantic Sensor Web [99] develops
ontologies, software, and methods to improve re-
trieval, access, and integration of observation data
as well as sensor metadata. Ontologies, such as
the Semantic Sensor Network ontology [23], pro-
vide formal specifications that ease retrieval and
integration of data, while semantics-enabled Sen-
sor Observation Services (SOS) provide access and
querying capabilities [44]. Work on the Semantic
Sensor Web also investigates how to establish and
maintain provenance information about sensors,
e.g., their survival range, sampling time, used ob-
servation procedure, and so forth [113,85]. To re-
duce manual interaction, sensor Plug & Play in-
vestigates how to automatically register sensors
and mediate their observation results to fit the
needs of specific services [18]. Other examples of
recent work include sensor data mashups [86] and
research on stream reasoning [109]. An overview of
research challenges for the Semantic Sensor Web
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was recently published by Corcho and Garcia-
Castro [24].

Similarity, Alignment, and Translation

Semantic translation [43,65,29,84], semantic
similarity measurement [92,90,71,98,83,53], and
geo-ontology alignment [26] have been major re-
search topics over the past years. Both are essen-
tial for establishing Semantic Reference Systems;
while semantic translation maps between vocabu-
laries and can be thought of as the analogy to da-
tum transformation, semantic similarity measures
the distance between concepts in a semantic space
as an analogy to distance in space and time. Ontol-
ogy alignment addresses the combination of mul-
tiple ontologies to enable data reuse and integra-
tion. The fact that most GI analysis, e.g. interpola-
tion, kernel methods, or point pattern analysis, are
based on spatial auto-correlation and distance in
space, shows why semantic similarity is considered
essential for making geo-ontologies and semantics
first class citizens of GIS and spatial statistics.
Similarity also plays a central role in most of the
cognitive approaches introduced before, as these
rely on direct mappings between ontologies instead
of rigid top-down ontologies. However, as argued
by Bittner et al. [13], these views do not contradict
but can benefit from each other. Semantic similar-
ity and analogy reasoning also enable novel types
of user interfaces that ease navigating and brows-
ing through geo-data and ontologies [53]. Similar-
ity, however, is highly sensitive to context. Con-
sequently, researchers have studied the impact of
context and proposed different weights and proce-
dures to account for its effect. A recent example
for such work is Keßler’s DIR measure, which iden-
tifies the contextual information with the largest
impact on a given setting, and, thus, requiring ad-
justment of similarity measures [61].

Spatial Data Infrastructures

Spatial Data Infrastructures (SDI) provide stan-
dardized means for publishing, querying, retriev-
ing, and accessing geodata via Web services. Ad-
ditionally, SDIs offer notification and processing
services and, thus, go beyond simple data stores.
Data and processing services can be chained to
model complex scientific workflows. To ensure
a meaningful chaining, however, requires formal

specifications of the service inputs, outputs, side
effects, parameters, and so forth. Consequently, se-
mantic markups for Web services have been an ac-
tive research area for many years [79,31,105]. Ex-
amples of SDI specific research include the work
of Lemmens et al. [70], Vaccari et al. [108], and
Lutz [73].

While the Geo Web is typically composed of
SDI services and uses its own markup languages
and protocols, the Semantic Web is based on the
its own technology stack. This leads to a situa-
tion were both infrastructures co-exist separately.
It is, for instance, not possible to use a Seman-
tic Web reasoner for instance classification of geo-
data. Therefore, researchers developed different
approaches for a semantic enablement of the Geo-
Web. Janowicz et al., for instance, specified trans-
parent and bi-directional proxies that allow users
of both infrastructures to share data and services
[54]. Semantic annotations have been proposed to
lift existing geo-data to a semantic level [62,80]. In
the context of the digital humanities, annotations
have been used to create Linked Spatiotemporal
Data and to enrich old maps with interlinked in-
formation from the global graph [101].

Finally, in the context of eScience and sci-
entific workflows, researchers studied the role
of semantic technologies and ontologies for the
earth sciences [33,16].

Future Challenges

In the following, we highlight novel trends in
geospatial semantics research that may set the
agenda for future work.

Semantic Engineering as Interaction Between
Humans

In recent work on data semantics [94,52], it has
become apparent that semantic engineering of ge-
ographic information is often less a matter of in-
forming about a static information ontology, i.e.,
an inventory of information concepts or realistic
truth conditions, nor a matter of communication
between machines, or of static mapping between
ontologies. It can also be understood as a mat-
ter of dynamic machine mediated communication
between humans [94], i.e., between data providers
and users, with data (as well as semantic meta-
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data) being the explicit top of a pyramid of im-
plicit acts of interpretation, observation, and con-
struction.

Data means something in a specific pragmatic
context. However, this context is lost, in one way
or another, under the conditions of digital commu-
nication. How can semantic engineering support
the communication of data? The problem of shar-
ing data via machines is not that machines are un-
able to communicate, but that humans misunder-
stand each other if communicating via machines
[94]. Correspondingly, the task of semantic engi-
neering is to support users in a communication sit-
uation, i.e., in reconstructing the meaning of data
in a peer-to-peer fashion with respect to a provider
context. The goal is to put humans in a position
to compare their contexts, to judge fitness for pur-
pose, and, thus, to generate semantic links in an
ad-hoc fashion. This also implies that the common
practice of publishing data together with static se-
mantic annotations may rather hinder reusability
and that dynamic typing approaches are required
instead [52].

This requires a pragmatic shift in the role of
existing semantic engineering technology: Seman-
tic heterogeneity needs to be technologically sup-
ported instead of resolved. Semantic interoperabil-
ity may be considered the outcome of a success-
ful act of shared interpretations of certain classes.
Users need to be put in a position where they can
learn the provider classes or construct their own
representations, if necessary. Information tools,
such as formal specification, reasoning, as well as
knowledge discovery tools, need to be reevaluated
with respect to their role in this computer medi-
ated communication process.

Standardization and Alignment

As argued above, realizing the vision of a
Geospatial Semantic Web will require combining
top-down as well as bottom-up methods. Foun-
dational ontologies, flexible ontology design pat-
terns, and machine learning should work hand
in hand and have to be supported by a layered,
provenance-enabled framework [51]. This has con-
sequences for workflows in science and industry.

In the past, most work proposed to address the
need for semantic interoperability by standardiza-
tion. It was assumed that standardization bodies,
such as the Open Geospatial Consortium, would

provide the geosciences with a well defined set
of ontologies that can be used to annotate data
and services and, thus, ease retrieval and integra-
tion. There are some examples of success stories,
e.g., GeoSPARQL, and a number of scientific com-
munities were able to develop and maintain on-
tologies that are widely used, e.g., in bioinformat-
ics. Nevertheless, sophisticated domain-level on-
tologies that go beyond simple taxonomies and
have been adopted into scientific workflows are
still rare. Developing such ontologies may take
many years and revisions, raises questions of main-
tenance and of ontology evolution in light of new
scientific discoveries, and may exclude the long tail
of science by enforcing certain ontological commit-
ments. It is also unclear how such ontologies would
perform in interdisciplinary settings.

Alternatively, in the light of progress on ontol-
ogy matching, aligning, and semantic translation
[26,50,100,35], local and purpose-driven micro-
ontologies may be a suitable alternative. Such
micro-ontologies have a limited scope, are poten-
tially less affected by problems of uncertainty and
vagueness, do not require users to agree to a
large set of abstract ontological commitments, and
are developed by communities or individuals in-
terested in their maintenance. In fact, such on-
tologies are frequently used on the Linked Data
Web. To ease retrieval and integration, such micro-
ontologies can be aligned and matched to other
ontologies, including foundational ontologies. The
resulting network of micro-ontologies can be used
to reduce the risk of incompatibilities. It may
turn out that the intuition that ontology stan-
dardization is less difficult and more persistent
than investing into research on alignment, match-
ing, and translation is wrong, and standardiza-
tion is, in fact, the more difficult task. Con-
sequently, one could standardize alignments in-
stead of ontologies. This also shifts the focus
from ensuring semantic interoperability to avoid-
ing incompatibilities.

Geospatial Reasoning in the Semantic Web

There are two traditions of geospatial reason-
ing: One is spatial reasoning, i.e., reasoning with
qualitative spatial relations, including topological
reasoning, such as overlap, meet and disjoint, and
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reasoning with directions1. This kind of reasoning
is based on deductive inference in first-order pred-
icate logic (FOL) [22], as well as on finite com-
position tables and constraint reasoning, in which
all possible relations are enumerated exhaustively
[91]. Another tradition of reasoning is based on
spatial operators in a spatial database, i.e., on ex-
plicitly represented spatial geometry. These include
point-in-polygon tests, R-tree search algorithms,
and geometric as well as set-theoretic operators for
vector data. Still another form is based on graph-
based computational methods, which allow, e.g. to
reason about road networks [20].

In comparison, current Semantic Web reason-
ing is rather narrowly defined. It focuses on par-
ticular decidable subsets of FOL, namely descrip-
tion logics and Horn rules, which lack the ex-
pressivity needed to reason with spatial relations
[104]. Furthermore, other forms of geospatial rea-
soning, such as geometrical computation or ap-
proximate reasoning, are not well supported by
the Semantic Web [48]. The integration of such
reasoning paradigms into the Semantic Web re-
quires further consideration of their RDF repre-
sentation and computability, as well as a broad-
ening of the existing reasoning paradigm itself.
The latter may have been too narrowly focused
on soundness, completeness, and decidability. It
may, e.g., be useful to loosen soundness and com-
pleteness demands of proof procedures in order
to allow for scalable approximate reasoning [48].
Furthermore, undecidable languages can be use-
ful, since the decision problem is often sufficiently
constrained in practice.

How can geospatial reasoning approaches best
be integrated into the Semantic Web, in a way
which allows tractable geospatial reasoning over
Linked Spatiotemporal Data? Many spatial qual-
itative decision problems are NP-hard, however,
tractable subsets can be identified [91]. There are
attempts at integrating qualitative spatial rea-
soning into RDF reasoners, such as Racer [111]
and Pellet [104]. A promising direction of re-
search is to combine qualitative reasoners with

1Prominent spatial calculi are mereotopological calculi,
Frank’s cardinal direction calculus, Freksa’s double cross
calculus, Egenhofer and Franzosa’s 4- and 9-intersection

calculi, Ligozat’s flip-flop calculus, Cohn’s region connec-
tion calculi (RCC), and the Oriented Point Relation Alge-
bra [91].

geometrical computation. In the Semantic Web,
this may be realized in terms of spatial exten-
sions to RDF and SPARQL, such as stSPARQL
or GeoSPARQL [63,9].

Exploratory Interaction and Next-Generation
Knowledge Infrastructures

The so-called Fourth Paradigm describes a new,
data-intensive approach to scientific discovery [45].
It is often characterized as the scientific perspec-
tive on Big Data. The underlying argument is that
the availability of data with a finer-grained spa-
tial, temporal, and thematic resolution will allow
scientists to answer complex questions which can-
not be answered from within a single domain but
span across multiple disciplines.

To address the arising new challenges and possi-
bilities will require novel data management infras-
tructure to publish and retrieve scientific data and
models across domains. NSF’s future EarthCube
is just one example for such a next-generation
knowledge infrastructures. As community-driven
initiative, EarthCube includes working groups fo-
cused on semantics and ontologies, brokering,
as well as interoperability. Nevertheless, at their
very core the envisioned next-generation infras-
tructures are mostly distributed and integrated
knowledge archives. The crucial first step, namely
data retrieval, is mostly neglected and approached
following old paradigms or even (leaving simple
taxonomies aside) semantics-free keyword search
in metadata catalogs. Instead, next-generation
knowledge infrastructures could be envisioned as
distributed knowledge engines [52]. For example,
by using deep semantics, reasoning services, and
machine learning such knowledge engines could as-
sist scientists in deriving and testing new theo-
ries and models. By applying analogy-based rea-
soning to Linked Spatiotemporal Data, such en-
gines could also automatically propose relevant
data sources for evaluation.

Finally, working with interdisciplinary data and
models will require novel interaction paradigms
and user interfaces that actively support schol-
ars in finding relevant data. Instead of requiring
precise queries and a detailed knowledge of the
accessed data and catalogs, these new interfaces
should support browsing and navigating the global
graph of interlinked data. Combining semantic
similarity and analogy reasoning with paradigms
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such as exploratory search [77], may be a promis-
ing direction for future research. To give a concrete
example, scientists could query for the Paris of
the West2 , or the Californian Rattlesnake Fire of
the 1990s. Both queries would exploit the variety
component of Big Data to take spatial, temporal,
and thematic data from various sources, e.g., eco-
nomics, human geography, climatology, geology,
news records, and so forth into account [52].

Conclusions

How does the outlined past, present, and fu-
ture research benefit the individual geoscientist?
What is the value proposition of the Geospatial
Semantic Web? Summing up, semantic technolo-
gies and ontologies support publishing, retrieving,
and reusing data. They also reduce the risk that
data is misinterpreted and, thus, improve the re-
producibility of scientific results. The paradigm
shift introduced by Linked (Open) Data breaks
up data silos and allows to combine data on-
the-fly. Creating smarter (meta-) data also sup-
ports the development of more generic and ro-
bust software. Scientists benefit from this by be-
ing able to select from a wide range of compatible
(and free) Semantic Web software such as ontol-
ogy editors, databases for RDF data, user inter-
faces, reasoners, as well as toolkits for triplifica-
tion, linking, and annotation. Semantic technolo-
gies and ontologies also foster interoperability and
data integration by supporting complex integrity
constraint checking beyond topological consis-
tency. Semantics-enabled user interfaces support
scientist in exploring interdisciplinary datasets by
browsing through interlinked data. Finally, seman-
tic technologies can assist researchers by semi-
automatically matching data to models and by
translating between different conceptual schemas.
Thus, they open up data sources and models that
could not be used before.

References

[1] A. I. Abdelmoty, P. Smart, and C. B. Jones. Build-

ing place ontologies for the semantic web: Issues and

2and see how San Francisco would rank in the returned

results.

approaches. In Proceedings of the 4th ACM work-

shop on Geographical information retrieval, GIR ’07,

pages 7–12, New York, NY, USA, 2007. ACM.
[2] B. Adams and M. Raubal. A metric conceptual space

algebra. In K. Hornsby, C. Claramunt, M. Denis,

and G. Ligozat, editors, Spatial Information Theory,
9th International Conference, COSIT 2009, Aber

Wrac’h, France, September 21-25, 2009 Proceedings,

pages 51–68. Springer, Berlin, 2009.
[3] P. Agouris and A. Stefanidis. Efficient summarization

of spatiotemporal events. Commun. ACM, 46(1):65–
66, 2003.

[4] O. Ahlqvist and A. Shortridge. Characterizing

land cover structure with semantic variograms. In
A. Riedl, W. Kainz, and G. Elmes, editors, Progress

in Spatial Data Handling -12th International Sym-

posium on Spatial Data Handling, pages 401–415.
Springer, 2006.

[5] A. Alazzawi, A. Abdelmoty, and C. Jones. What can

I do there? Towards the automatic discovery of place-
related services and activities. International Journal

of Geographical Information Science, 26(2):345–364,

2012.
[6] C. Alexander, S. Ishikawa, and M. Silverstein. A Pat-

tern Language: Towns, Buildings, Construction. Ox-
ford University Press, New York, 1977.

[7] L. Barsalou. Perceptual symbol systems. Behavioral

and Brain Sciences, 22:577–660, 1999.
[8] J. Bateman. Towards a generic foundation for spatial

ontology. In A. Varzi and L. Vieu, editors, Proceed-

ings of the 3rd International Conference on Formal
Ontology in Information Systems (FOIS-04), pages

237–248. IOS Press, Amsterdam, 2004.

[9] R. Battle and D. Kolas. Enabling the Geospatial Se-
mantic Web with Parliament and GeoSPARQL. Se-

mantic Web Journal, 3(4), 2012.

[10] K. Beard. Modeling change in space and time: An
event based approach. In R. Billen, E. Joao, and

D. Forrest, editors, Dynamic and Mobile GIS: Inves-

tigating Changes in Space and Time, pages 55–74.
CRC Press, 2007.

[11] B. Bennett. Spatial vagueness. In R. Jeansoulin,
O. Papini, H. Prade, and S. Schockaert, editors,
Methods for Handling Imperfect Spatial Information.

Springer-Verlag, 2011.
[12] B. Bennett, D. Mallenby, and A. Third. An ontology

for grounding vague geographic terms. In C. Eschen-
bach and M. Gruninger, editors, Proc. 5th Intern.
Conf. on Formal Ontology in Information Systems,
pages 280–293. IOS-Press [u.a.], Saarbrücken, 2008.

[13] T. Bittner, M. Donnelly, and B. Smith. A spatio-
temporal ontology for geographic information inte-

gration. International Journal of Geographical Infor-
mation Science, 23(6):765–798, 2009.

[14] B. Brodaric. Geo-pragmatics for the geospatial se-
mantic web. T. GIS, 11(3):453–477, 2007.

[15] B. Brodaric and M. Gahegan. Experiments to ex-

amine the situated nature of geoscientific concepts.
Spatial Cognition & Computation, 7(1):61–95, 2007.

[16] B. Brodaric and M. Gahegan. Ontology use for se-
mantic e-science. Semantic Web, 1:149–153, April



10

2010.

[17] B. Brodaric and F. Probst. Dolce rocks: Integrat-

ing geoscience ontologies with dolce. In AAAI Spring
Symposium: Semantic Scientific Knowledge Integra-

tion, pages 3–8, 2008.
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[76] E. Mäkelä, E. Hyvönen, and T. Ruotsalo. How to deal

with massively heterogeneous cultural heritage data

- lessons learned in culturesampo. Semantic Web,

3(1):85–109, 2012.
[77] G. Marchionini. Exploratory search: from finding to

understanding. Commun. ACM, 49(4):41–46, 2006.
[78] D. M. Mark, B. Smith, M. Egenhofer, and S. C.

Stephen Hirtle. Ontological foundations for geo-

graphic information science. In R. McMaster and
L. Usery, editors, Research Challenges in Geographic

Information Science, pages 335–350. CRC Press,

2004.
[79] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mc-

dermott, S. Mcilraith, S. Narayanan, M. Paolucci,

B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. Owl-s: Semantic markup for web services,



12

November 2004.

[80] P. Maue, H. Michels, and M. Roth. Injecting seman-

tic annotations into (geospatial) web service descrip-
tions. Semantic Web Journal, 3(4), 2012.

[81] D. Montello, M. Goodchild, J. Gottsegen, and

P. Fohl. Where’s downtown? Behavioral methods for
determining referents of vague spatial queries. Spatial

Cognition & Computation, 2(3):185–204, 2003.

[82] NASA. A.40 computational modeling algorithms and
cyberinfrastructure (December 19, 2011). Technical

report, National Aeronautics and Space Administra-
tion (NASA), 2012.

[83] K. Nedas and M. Egenhofer. Spatial-scene similarity

queries. Transactions in GIS, 12(6):661–681, 2008.
[84] N. Noy. Semantic integration: a survey of ontology-

based approaches. SIGMOD Rec., 33:65–70, Decem-

ber 2004.
[85] P. Patni, S. Sahoo, C. Henson, and A. Sheth. Prove-

nance aware linked sensor data. In P. Kärger,

D. Olmedilla, A. Passant, and A. Polleres, editors,
Proceedings of the Second Workshop on Trust and

Privacy on the Social and Semantic Web, 2010.

[86] D. L. Phuoc and M. Hauswirth. Linked Open Data in
Sensor Data Mashups. In D. D. Kerry Taylor, editor,

Proceedings of the 2nd International Workshop on

Semantic Sensor Networks (SSN09) in conjunction
with ISWC 2009, volume Vol-522. CEUR, 2009.

[87] F. Probst. Observations, measurements and semantic
reference spaces. Appl. Ontol., 3(1-2):63–89, 2008.

[88] F. Probst and M. Lutz. Giving Meaning to GI Web

Service Descriptions. In International Workshop on
Web Services: Modeling, Architecture and Infrastruc-

ture (WSMAI 2004), 2004.

[89] R. Raskin and M. Pan. Knowledge representa-
tion in the semantic web for earth and environmen-

tal terminology (sweet). Computers & Geosciences,

31(9):1119 – 1125, 2005.
[90] M. Raubal. Formalizing conceptual spaces. In

A. Varzi and L. Vieu, editors, Formal Ontology in

Information Systems, Proceedings of the Third In-
ternational Conference (FOIS 2004), volume 114 of

Frontiers in Artificial Intelligence and Applications,
pages 153–164. IOS Press, Torino, Italy, November

2004.
[91] J. Renz and B. Nebel. Qualitative spatial reason-

ing using constraint calculi. In M. Aiello, I. Pratt-
Hartmann, and J. van Benthem, editors, Handbook of

Spatial Logics, pages 161–215. Springer-Verlag, 2007.
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