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Supported by eye-movement data collected during a controlled experiment on small-multiple map displays, a new concept
coined inference affordance aimed at overcoming drawbacks of traditional empirical ‘success’ measures when evaluating
static visual analytics displays and interactive visual analytics tools is proposed. Then, a novel visual analytics research
methodology is outlined to quantify inference affordance, taking advantage of the well-known sequence alignment analyses
techniques borrowed from bioinformatics. The presented visual analytics approach focuses on information reduction of
large amounts of fine-grained eye-movement sequence data, including sequence categorisation and summarisation.

INTRODUCTION

Cognitive scientists have attempted to tackle the funda-
mental research question of how externalised visual
representations (e.g., statistical graphs, organisational
charts, maps, animations, etc.) interact with people’s
internal visualisation capabilities, and can facilitate inference
and decision making (Scaife and Rogers, 1996; Simon and
Larkin, 1987). Experimental research in psychology sug-
gests that static graphics can facilitate comprehension,
learning, memorisation, communication of complex phe-
nomena, and inference from the depiction of dynamic
processes (Hegarty, 1992; Hegarty and Sims, 1994).

The need to better understand the cognitive processes
involved in using dynamic displays has become more
important recently, paralleling the exponential growth of
animation and dynamic graphics to which people are being
exposed in their everyday life (e.g., virtual-globe viewers,
game controllers, and weather animations on TV news). As
with most rapid developments of new technologies, the
theory and understanding of novel graphics technology and
applications has lagged behind.

As real-time three-dimensional landscape fly-throughs
and interactive map animations become ubiquitous with
dissemination over the Internet, an important question that
remains is how effective the potential increase of informa-
tion density in these highly interactive visual forms really is
for (spatial) knowledge construction and decision-making.
We still know very little about how effective novel
interactive graphical data depictions and visual analytics
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tools are for knowledge discovery, learning, and sense-
making of dynamic, multidimensional processes (Harrower
and Fabrikant, 2008). Today, a pervasive theme underlying
many current (geo)visualisation research challenges is
the difficulty of effectively evaluating highly interactive
visualisation tools and complex displays, and of identitying
their potentially positive influence on exploratory data
analysis, knowledge extraction, and learning (Harrower,
2007).

STATIC AND DYNAMIC DEPICTIONS OF PROCESSES
AND EVENTS

Visual analytics is based on the intuition that highly
interactive and dynamic depictions of complex and multi-
variate databases amplify human capabilities for inference
and decision making, as they facilitate cognitive tasks such
as pattern recognition, imagination, association, and
analytical reasoning (Andrienko and Andrienko, 2007;
Thomas and Cook, 2005).

This contention is supported by the congruence principle
suggested by Tversky et al., (2002). This principle states
that well designed external representations such as graphic
displays show a natural cognitive correspondence in
structure and content with the desired structure and
content of the internal (mental) representation (i.e., the
appropriate analytical inference). For example, animations
congruently depict the concept of time and change with
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changing displays over time, so it seems obvious
that humans will have less difficulty comprehending
complex dynamic processes through well-designed dynamic
displays.

However, in a series of publications surveying the
cognitive research literature on animated graphics (that
did not include map animations), Tversky and colleagues
claim they failed to find benefits to animations for
conveying dynamic processes (Bétrancourt ez al., 2000;
Bétrancourt and Tversky, 2000; Morrison et al., 2000;
Morrison and Tversky, 2001; Tversky et al., 2002). These
cognitive scientists argue that studies reporting a super-
iority of animations over static displays had experimental
design flaws. For example, additional interactivity for the
animated sequences violated the information equivalence
between static and animated graphics. However, as Krygier
et al. (1997) suggest, interactivity has different intensities
or modalities, with static graphics having the lowest
interaction intensity — but not zero. Static graphics do
afford mental (internal) interactivity. A sequence of
static graphics (e.g., small multiples) can be seen as
(mentally) interactive in the sense that people can
proactively control with their eyes the viewing order of
the static sequence; they can always go back to the
beginning of the sequence, and they can choose to study
the sequence at their own pace and in any order they wish.
Generally, if a static map is presented on a piece of paper (or
a small display), it can be rotated and/or folded, as
travellers commonly do with maps, for instance. An
animated sequence being slightly more (externally) inter-
active when featuring a start, stop, and rewind button is less
(internally) interactive, in the sense that the sequence must
be passively viewed in a pre-defined order. This reduction in
(internal) interactivity may add cognitive load onto a
viewer’s working memory, thus limiting the animation’s
potential for facilitating learning (Sweller, 1994). It seems
that this particular hypothesis has not been adequately
investigated in animation studies, especially not on dynamic
map displays.

Results on (comparative) cartographic experiments are
inconclusive, partly because it depends on how ‘better’ is
defined and measured. In some experiments that compare
map animations with static small-multiple displays, partici-
pants answer more quickly but not more accurately with
animations (Koussoulakou and Kraak, 1992). In other
experiments, they take longer and answer fewer questions
more accurately (Cutler, 1998), or the time it takes to
answer the question does not relate to accuracy at all
(Griffin ez al., 2004). In a mostly qualitative map animation
study, Slocum ez a/., (2004 ) found that map animations and
small multiples are best used for different tasks. The former
are more useful for inspecting the overall trend in time-
series data, the latter for comparisons of various stages at
different time steps.

We argue in the next sections that the question of
whether animations are superior to static maps is not only
an ill-posed question but also an unanswerable one. As
geovisualisation designers, we should instead be interested
in finding out how highly interactive visual analytic displays
work, identifying when they are successful and why
(Fabrikant, 2005).
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INFORMATION EQUIVALENCE VS. INFERENCE
AFFORDANCE

There is a fundamental problem with these kinds of
comparative studies. One the one hand, it seems obvious
that well-designed animations need to be compared to well-
designed static displays. Very often, however, the stimuli
are not prepared by design experts, thus differences that are
found might be attributed simply to bad design choices. To
precisely identify differences in the measures of interest, the
design of the animations and small multiples to be
compared requires tight experimental control to the extent
that it might make a comparison meaningless. Tversky and
colleagues (citations above) argue that experimental studies
reporting advantages of animation over static displays
lacked equivalence between animated and static graphics
in content or experimental procedures. For example, they
argue that animations show more information than static
graphics because only the coarse segments are portrayed in
static graphics, whereas animations portray both the coarse
and fine segments of change. This presupposes the notion
that animations and static displays can be informationally
equivalent, a term coined by Simon and Larkin (1987) to
express the idea that all information encoded in one
representation is also inferable from the other, and vice
versa. In other words, can all information available in a map
animation be used to build an informationally equivalent
small-multiple map display (SMMD)? We argue that well-
designed animations are inherently different from well-
designed small multiples and showu/d afford different kinds of
information extraction, specifically amenable to the desired
inference modes and to the specific knowledge construction
tasks. Making an animation equivalent in information
content to a small-multiple display in order to achieve
good experimental control for comparisons may actually
mean degrading its potential power for certain tasks.
Animations are not simply a sequence of static small
multiples (Harrower, 2003). Effective static displays depict
configural information (i.e., states) or static snapshots
(freeze frames) of events and processes. For example, in a
static time series of choropleth maps, a seven-class solution
might eftectively display a complex pattern of change. In an
animation using the same data, however, it might not be
wise to portray maps with seven classes, as viewers would
not be able to apprehend that much detail and keep it active
in working memory when viewing a non-interactive
animation. If the goal of the animation is to depict change,
then good design should focus particularly on emphasising
change most effectively, for example, by applying smooth
transitions between display frames to avoid potential
change blindness (Rensink et al., 1997), something that
static displays are inherently unable to achieve (Fabrikant
and Goldsberry, 2005).

With their term computational equivalence, Simon and
Larkin (1987) suggest a much more useful concept for
assessing the effectiveness of graphic representations,
especially when comparing different visual-analytics displays
that typically afford different modes of interactions for
inference making. Two representations are said to be
computationally equivalent when any inference that is easily
and quickly drawn from the encoded information in one
display can be ecasily and quickly drawn from the other
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Figure 1. A gaze plot including eye fixations and saccades overlain onto a small-multiple map stimulus

(informationally equivalent) display and vice versa. Simon
and Larkin (1987) do not specify what easily and quickly
mean. They suggest that the advantages of graphics over
text in general are computational, not because they contain
more information, but because the presentation of the
information can support extremely useful and efficient
(computational) inference-making processes. This suggests
that computational equivalence might be the more useful
concept to use for comparison of complex graphics and
interactive visual tools, with varying degrees and differing
kinds of interaction affordances. We argue that computa-
tional equivalence is inherently linked to information
equivalence and cannot be easily disentangled.

When comparing displays that afford different interaction
modes, there seems to be a trade-off between informational
equivalence and computational equivalence. To compare a
non-interactive choropleth map animation in a fair way to a
small-multiples display (e.g., with seven classes), the
informational equivalence of the two displays has to be
violated (i.e., the choropleth map classes must be reduced
for the animation), because the limited interaction possi-
bilities afforded by the animation leads to greater cognitive
load, which affects its computational performance.

To better capture the effectiveness of a highly interactive
and dynamic visual analytics display, we instead propose to
use the concept of inference affordance that integrates both
informational equivalence (amount and quality of content)
and computational equivalence (quality and efficiency of
inferences based on design). Effective visual analytics is not
only about successfully extracting the content of the

encoded data, but also about supporting different kinds
of knowledge construction and inference-making processes
through various cognitively adequate inference affordances.

What this discussion has not touched on so far is the
complex issue of individual differences, including prior
knowledge and training for visual-inference making.
Elsewhere, it has been suggested that bottom-up (e.g.,
perceptual) and top-down (i.e., cognitive) processes are
interlinked (Kriz and Hegarty, 2007). In other words, it
does not just suffice to provide well designed graphics and
visual tools and hope for success, but users also need to
have an established base capacity for recognising and
deciding which tool to select when, how, and for what
aim and purpose (Lowe, 1999).

EYE-MOVEMENT ANALYSIS AND INFERENCE
AFFORDANCE IN VISUAL ANALYTICS DISPLAYS

For over a century, psychologists and other researchers have
recorded human eye movements, mostly on static displays,
to learn how people read texts and view various static
graphic displays, such as advertisements, works of art,
charts, diagrams, etc. (Wade and Tatler, 2005). People
move their eyes so that the fovea (the vision centre with
highest acuity) is directed toward what they wish to attend
to — to visually process at the highest possible detail
(Rayner, 1992). Continual, ongoing eye movements are
called saccades. Saccades are interrupted by eye fixations,
phases where our eyes are relatively static, focusing on and
attending to an object of interest.
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The assumption that people’s centre of visual attention is
tightly linked with where they look during scene viewing
has been recognised by a number of cognitive scientists
who utilise eye-movement records to infer knowledge
about the cognitive processes involved in various visual
cognition tasks (Rayner, 1998). An advantage of eye-
movement recordings, compared with traditional empirical
data collection (e.g., questionnaires, interviews etc. ), is that
they provide relatively unobtrusive, real-time measures of
(overt) visual and cognitive information processing beha-
viour (Henderson and Hollingworth, 1998).

Cartographers have utilised eye-movement recording as
carly as the 1970s to investigate how people look at static
maps (Steinke, 1987). Cartographers were particularly
interested in improving the design of their map products
based on eye-movement research, thereby creating better
and more user-friendly products (Montello, 2002). After
increased interest in eye-movement studies with maps
during the 1970s and early 1980s, the collection of eye-
movement data in academic cartography has almost
disappeared. Montello, (2002) suggested that one of the
factors might have been that eye-movement analysis tended
to be very expensive, and notoriously difficult to perform
and analyze. Other critical voices argued that this kind of
data collection did not tell mapmakers anything they did
not already know, and thus did not warrant the extra effort
and expense. Another reason for the limited success of eye-
movement studies in cartography may have been that
rescarchers tended to focus their studies on where people
looked without getting at the how and why of map reading
that generated the viewing pattern for particular map tasks
(Brodersen et al., 2002).

However, especially when evaluating visual analytics
tools, where classic evaluation measures such as accuracy
of response and time to respond might fall short (because of
the entanglement of computational and informational
equivalence), eye-movement behaviour analysis should
provide additional insight into assessing the hard-to-
measure concept of inference affordance proposed earlier.

SMALL-MULTIPLE DISPLAYS

Small-multiple displays (SMD), a graphic display type
named and popularised by Tufte, (1983), had gained
public attention for their potential to uncover complex
dynamic processes at least since Muybridge introduced
stop-action photography to study galloping horses in the
late 19th century (Encyclopedia Britannica, 2008). Early
on, cartographers achieved a high level of sophistication in
representing complex, dynamic spatio-temporal reality
through the power of abstraction, in the form of a series
of static two-dimensional maps, which Bertin, (1967) calls
the ‘collection of maps with one map characteristic’. More
recently, small multiples have resurfaced in highly inter-
active and dynamic visual analytics displays, allowing the
user to reorder, brush, and otherwise manipulate the
depicted spatio-temporal data on the fly (MacEachren
et al., 2003). The informational effectiveness of a static
small-multiple display compared with an animation depends
on using the appropriate number of small multiples and
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choosing the key events; that is, it depends on how many
and which of the key events (macro steps) are selected to
discretely represent the continuous and dynamic process (of
micro steps). Well-designed small-multiple displays depict
the most thematically relevant (pre-selected) key events
and, unlike non-interactive animations, allow viewers to
inspect the display at their own pace and viewing order. The
inference affordance is directly related to the arrangement
of the small multiples in the display, which in turn might be
determined by the inference tasks the display should
support.

EXPERIMENT

Utilising the eye-movement data collection method to track
people’s viewing behaviour, we investigated the role of
inference affordance in static small multiple map displays
(SMMD). The hypothesis at the outset is that it SMMDs
and map animations are informationally equivalent, one
would expect to find that viewers” knowledge gained from
SMMDs would emphasise information about macro steps
and the configurational aspects of the display (i.e., its visuo-
spatial properties) more than on change (i.e., micro steps),
as claimed by cognitive scientists in the work cited above.
Moreover, in terms of computational equivalence, people’s
gazes would have to move sequentially from one map to the
next in the SMMD, matching the sequential viewing order
users are locked into in non-interactive animations, regard-
less of the knowledge-construction or inference-making
tasks.

In this paper, we report on experimental results that were
collected on SMMDs in isolation, without comparing the
results to a map animation condition. As argued earlier, we
believe the comparative ‘what-is-better’ question of
SMMDs vs. animations to be unanswerable directly by
means of a controlled experiment. The results reported in
later sections will mostly focus on the computational
aspects (inference events and process) of the inference
affordance measure proposed earlier and specifically present
a novel analysis approach to assess eye-movement behaviour
for this purpose. We first present inference making patterns
of individuals (exemplars) and then discuss methods for
aggregation and summarisation. While we chose small
multiple map displays as one typical static depiction method
for representing a spatio-temporal process, the presented
evaluation methodology is generic enough to be applicable
to any spatial display (static or interactive) that may be
produced to support spatio-temporal inference making.

In a controlled experiment, we first asked novice
participants (#=34), tested individually, to study a series
of small-multiple maps showing monthly ice cream
consumption for an average year for different states in a
fictitious country and then answer a number of questions
about these maps (Figure 2).

The test questions required participants to make infer-
ences varying in type and complexity; test question
constituted a within-subject independent variable. For
more complex inference questions we asked participants
to explain their answers. Digital audio-recordings of
participants’ verbal statements permit joint analyses with
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Figure 2. Sample small-multiple test stimulus with a general pattern detection question

the accuracy of their responses (inference quality measure)
and their eye-movement recordings (inference process
measure), all dependent variables.

Figure 3 shows a test participant’s eye-movement pat-
terns overlain on two identical SMMDs, but during two
different inference-making tasks. The graduated circles
show eye fixation durations (the larger the circle, the
longer the fixation), and the connecting lines represent
saccades, rapid eye movements between fixations. The
passage of time is represented in both panels with
transparency; that is, the more opaque the saccades and
fixations are, the more recent.

In Figure 3a, the task is to gain an overall impression of
the SMMD and verbally describe the patterns that are
discovered during its visual exploration. In contrast, in
Figure 3b, the task was to specifically compare two maps
within the SMMD. When a map-use context requires a user
to compare items in a time series (across time, space, or
attribute), the non-interactive animations (locking a viewer
into a pre-defined sequence) will always add cognitive load,
as the viewer will have to wait and remember the relevant
information until the respective comparative displays come
into view. When animating the collected gaze tracks, one
can clearly see that the viewer is not exploring the display in
the implied sequence of the small-multiple arrangement,
but going back and forth between the maps several times or
jumping between different rows of maps. Ironically, this is
one of our first success stories of the power of visual
analytics: The interactive animation of eye-movement
behaviour in the visual analytics tool we developed to

analyze eye movements turned out to be far superior for
analyzing our collected data than the static gaze plot
displays! To summarise: The SMMD allows the user to
freely interact with the data in the viewing sequence they
deem necessary for the task. This is one example of violating
the computational equivalency of SMMDs and non-
interactive animations in order to affect their informational
equivalence.

Figure 4 depicts eye-movement behaviours during two
magnitude-comparison tasks involving two maps at two
different time steps in an SMMD. In Figure 4a, a user is
asked to compare ice-cream consumption rates between the
months of May and August, and in Figure 4b between the
months of January and February. The gaze patterns reveals
that only the information contained in those specific two
maps is investigated to answer the test question. The
remaining small maps are completely ignored. This suggests
that for this particular task, non-interactive animations
would indeed not be informationally equivalent to
SMMDs, as they would force a user to see much more
information than is relevant for the inference task. To
maximise inference affordance, one could reduce the
overload of presented information by offloading it, i.e., by
making the animation interactive.

Moreover, these data further reveal that the design of the
SMMD is an integral part of the inference affordance
problem, which was not investigated in the cognitive work
reviewed above. The particular design of the SMMD
stimulus shown in Figure 4 seems to be ideal for detecting
detailed change information between the adjacent months
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Figure 3. Task dependent viewing behaviour of two identical
SMMD stimuli

of January and February, but not between May and August,
as these maps are far apart. In this case, adding interactivity
to an SMMD might alleviate the reduced computational
power produced by a suboptimal layout (e.g., by being able
to move maps), as the arrangement of the SMMDs cannot
be manipulated in the static version. A predefined layout
might make this kind of inference task particularly difficult.

The significantly different viewing behaviours depicted
suggest that small-multiple displays cannot generally be
computationally or informationally equivalent to non-
interactive animations; the computational and informa-
tional equivalence of displays certainly depends on the task,
the information extraction goal, and the decision-making
purpose.

VISUAL ANALYTICS OF EYE-MOVEMENT PATTERNS

Eye-movement research typically yields a tremendous
amount of fine-grained behavioural data, both spatially
and temporally, at very high levels of detail. For example, a
30-min recording will yield about 90 000 records, at a
temporal resolution of 50 Hz (50 gaze points/seconds).
Raw eye data are seldom used directly; they need to be
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Figure 4. Gaze plots for two different inference tasks affected by
layout design

filtered based on a duration threshold, an empirical
construct designed to better separate ‘where people look’
from where people cognitively ‘process seen information’.

Data typically contained in an eye-movement record are
depicted in Figure 5. A numeric identifier (‘Map’) links the
eye record with a particular graphic stimulus. As stimuli are
often randomised to avoid potential ordering biases, a
second identifier (‘Slide’) indicates the order in which the
stimuli have been seen. X- and Y-locations of the eye
fixations are stored in display (screen) coordinates.
Temporal information includes a time stamp released by a
trigger event (‘Start’ in seconds) and a fixation duration
(‘Duration’ in milliseconds). Additionally, investigators can
identify areas of interest (AOI) in a stimulus that get
recorded as ‘interaction’ events, as soon as the eyes have
entered that particular AOI zone (‘Top Zones’ column).
Other wuser interactions such as mouse or keyboard
manipulations can be recorded as well and linked to gaze
tracks. Based on available theory (Irwin, 2004; Henderson,
2007), only gaze points above 100 milliseconds have been
retained for further analysis of the SMMD.

To analyze these large datasets, cross-fertilisation with
GIScience /geovisualisation seems appropriate on several
levels. Eye-movement software, and other related time-
based observational data-analyses packages, typically do not
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Figure 5. Extract of a processed eye-movement data set

include any spatial-analytical tools to analyze or summarise
location-based data. Visual analytics methods are missing
entirely. Herein lies a great opportunity for the GIScience/
geovis community to reach out to other disciplines and help
in the analysis of eye-movement recordings. The amount
and complexity of the collected eye-movement recordings
required us to think carefully about how to make sense of
the empirical data sets. For this reason, we developed a
lightweight visual analytics interface (using Adobe Flash)
that allows us quickly to visually explore the collected eye-
movement data (play back, filter, visually summarise),
gaining first insights on individual behaviours before
running any hypothesis-testing analyses. Figure 6 below
depicts the Flash-based graphical user interface of our
eyeview software’, developed as a proof-of-concept tool and
described in Grossmann (2007).

The system allows one to load text-based eye-movement
records, as shown in Figure 5 above, and filter data based
on time, attribute, or location, including more advanced
spatial analyses; the subset can then be displayed overlain on
a graphic stimulus. The most useful feature of this system
for this research simply turned out to be the play-back and
sequencing function, which created animations of the eye-
movement sequences!

SEQUENCE ANALYSIS (SA)

Visual analytics methods and data exploration tools for the
effective depiction and analysis of time-referenced spatial

'The software was developed at the Geographic Information Visualization and
Analysis (GIVA) Unit of the Department of Geography at the University of Zurich,

Switzerland.

data sets at high resolution have recently gained new
attention (Laube and Purves, 2006; Andrienko and
Andrienko, 2007). Location changes, order of events,
smooth pursuits, etc., have become new foci of process-
based research using spatio-temporal moving-objects data-
bases of various kinds, and at different scales (i.c., moving
humans over a year or moving eyeballs in milliseconds)
(Laube et al., 2007). Very large databases containing
moving object behaviours are generated in abundance as a
result of various tracking devices available today (i.c., LBS,
GPS-enabled cell phones, eye trackers for market research
and in psychology).

Sequence analysis (SA) is one promising approach to the
analysis of process, event, and change, rather than the more
traditional analysis of objects and their configurations,
including location (Abbott, 1990). Depending on the
research question and the collected sequence data, different
kinds of SA methods are available. As for traditional
statistical analysis, it is important first to distinguish
continuous from categorical sequence data. Moreover,
non-recurrent sequences of equal length (in which events
cannot repeat in the sequence) or recurrent sequences with
unequal lengths (containing sub-sequences with event
repetitions) require different SA methods. One also needs
to consider if states within a sequence are dependent on
cach other, or if whole sequences are dependent on each
other.

For example, well-known Markov-type sequence analyses
aim at modelling a process that reproduces a certain pattern
(Hacisalihzade ez al., 1992). Markov analyses focus on
internal sequence dependencies. These are modelled as a
stochastic process by means of a ‘step-by-step’ computa-
tion, based on a transition probability matrix. There are
several reasons why these kinds of models are not suitable
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Figure 6. Visual analytics interface to depict inference-making behaviour through eye movements

for our work. For one, in exploratory work, the process is
often unknown, thus empirical data cannot easily be
compared with an idealised (theoretical) model sequence.
Second, Markov models assume that the likelihood of an
event occurring is conditional only on the immediate
predecessor event, which is too limiting for modelling
inference behaviour based on eye movements. In our work,
we do not know what the process is at the outset. We need
first to identify patterns hidden in the large eye-movement
data collections by summarising and comparing various
inference-making histories as a whole. We are also inter-
ested in identifying similarities across people, tasks, and
modalities that might tell us something about the
underlying process being affected by varying inference
affordances.

Sequence alignment methods discussed in the next
section seem particularly promising for our purpose,
because they are good at identifying prototypical inference
patterns by means of summarising and categorising ecye-
movement sequences (i.e., chains of attention events)
across people and tasks.

SEQUENCE ALIGNMENT ANALYSIS (SAA)

Sequence alignment analysis (SAA), another technique of
relevance to us, has been indispensable in bio-medical
research for uncovering patterns and similarities in vast
DNA and protein databases. Sequence alignment algo-
rithms were developed in biology and computer science in
the 1980s (Sankoff and Kruskal, 1983), and respective
software packages became available soon thereafter (e.g.,
ClustalW). On a most general level, SAA algorithms

identify similarities between character sequences, based on
the frequency and positions of characters representing
objects or events, and on character transitions that are
necessary for similarity assessment (Wilson, 2006). SAA has
also become popular in the social sciences (Abbott, 1995),
including geography (Joh et al., 2002; Shoval and Isaacson,
2007), but has hardly been looked at by the cognitive
community working with eye-movement data (West ez al.,
2000).

SEQUENCE ALIGNMENT ANALYSIS OF EYE-MOVEMENT
RECORDINGS

We employed the ClustalG software (Wilson et al., 1999)
to systematically compare and summarise individual infer-
ence-making histories collected through eye-movement
data analysis. ClustalG is a generalisation of the various
Clustal software packages widely used in the life sciences to
analyze gene sequences in DNA and proteins (represented
by characters with a limited alphabet). ClustalG has been
developed specifically to deal with social-science data that
require more complex coding schemes (i.e., an extended
alphabet) for describing more complex event histories and
social processes (Wilson et al., 1999). The proposed SAA
on collected eye-movement data includes a two-step
approach: (1) data reduction of overt inference behaviour
by summarisation of collected eye-movement sequences
(across people and inference tasks), and (2) categorisation
of found behavioural patterns by aggregating similar
sequences into groups through cluster analysis. The steps
can be applied in any order. In the discussion below, we
inverted the analysis step sequence, exemplified for one
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Figure 7. Participants’ eye-movement sequences loaded into ClustalG

inference task with the SMMD (sample data shown in
Figure 1).

CATEGORISATION OF EYE-MOVEMENT BEHAVIOUR

As mentioned earlier, aside from raw X-, Y-coordinates, we
also collected fixation sequences based on pre-defined areas
of interest (AOI), one area for each map in the SMMD. We
post-processed the AOI data for each test participant and
stored categorical character sequences into one ASCII text
file (for one exploratory inference task, see Figure 2).
Sequences vary considerably in length, from about 300
words to over 1100 words, where a word includes 3-
character abbreviations for the months in the depicted
SMMD time series (i.e., ‘Jan’, ‘Feb’, etc.).

The loaded sequences are colour-coded based on the
months of the year. One row represents a viewing sequence
for one participant. The viewing sequence begins on the left
hand side of Figure 7, at starting position ‘1’ found on the
bottom row («-axis) labelled ‘ruler’. One can immediately
see the winter months cluster at the beginning in cold
colours (blue to purple) followed by the summer months in
warm colours (yellow to brown). Next, a multiple align-
ment process is carried out, based on recommended input
values by the ClustalG developers (Wilson et al., 1999).
The first alignment phase includes a global pairwise-
alignment procedure to identify similarities between whole
sequences. The result is a resemblance matrix that is input
to an unrooted phylogenetic-tree model (Saitou and Nei,
1987). This tree model (not depicted) represents branch
lengths proportional to the estimated sequence uniqueness
along each branch and is subsequently applied to guide the
multiple alignment phase. Phase two, multiple alignment, is
in essence a series of pairwise alignments following the
branching order of the previously computed tree model.

Figure 8 portrays an extract of aligned sequences. One
can see that the Jan—Feb pattern (in blue) is well aligned,
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followed by gaps where sequences do not align (indicated
in Figure 8 with dashes) and aligned portions of a Nov—Dec
pattern. This pattern suggests that a significant group of
people may have treated the temporally adjacent winter
months as an inference unit but not at the same moment
during the exploration. Perhaps this is due to Jan—Feb and
Nov-Dec months being spatially far away from each other
on the SMMD, and people seem to have employed varying
viewing strategies and orders to compare them.

The uniqueness information contained in the clustering
tree can be further analyzed to categorise aligned
sequences. Based on the dendrogram, we identified three
clusters. One cluster (containing three participants) can be
characterised by viewing behaviour with considerable noise
due to significant eye-tracking signal loss, as shown in
Figure 9 (most and longest fixations outside the viewing
area in the upper left corner).

The other two clusters are more difficult to analyze by
simply playing back the viewing behaviour or by visually
comparing the groups of gaze plots. For this reason, we
decided to employ a powerful geovisual analytics toolkit
specifically targeted for the analysis of movement data
(Andrienko ez al, 2007). Details of the software and
provided analysis routines can be found in Andrienko ez al.
(2007).

SUMMARISATION OF EYE-MOVEMENT BEHAVIOUR

Trying to make sense of gaze data for one single test
participant on one inference task is already difficult enough,
due to extensive overplotting (as shown in the figures
above). Trajectory data from Figure 1 shown earlier has
been processed with a summarisation method from
Andrienko ¢t al. (2007), and the aggregated eye-movement
path for that same participant is visualised in Figure 10.
The summarisation analysis depicted in Figure 10b
includes directional information for the trajectories in the
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Figure 8. Subset of aligned sequences

gaze plot (blue lines with arrows). Thicker lines indicate
more movements. The depicted pattern suggests that
this participant did not divide his/her attention equally
over all maps. The first row was investigated more
frequently, in both directions and in various spatial intervals
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(e.g., one/two steps forward, one/two steps backwards,
etc.). Short vertical lines between rows suggests that the
participant also chose a spatial viewing strategy, that is,
viewing nearby displays irrespective of the suggested tem-
poral sequence. Longer trajectories (missing arrowheads)

Figure 9. Outlier eye movement sequence due to eye tracking recording problems
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Figure 10. Effect of data reduction, (a) original and (b) sum-
marised eye movements

mean that information below the line was looked at ‘in
passing’, if at all. For example, the last row, including
October, November, and December, has comparatively few
fixation locations (see next Figure 11) and were looked at
in reverse order from the suggested viewing sequence. To
validate the summarisation procedure, it also helps just to
look at fixation patterns, as visualised in Figure 11.

The overplotting problem gets exacerbated when trying
to inspect trajectories across all test subjects, as shown in
Figure 12 below.

As Figure 12 shows, severe overplotting does not allow
one visually to discover anything! To identify potential
viewing strategies on a single inference task, we summarised
all participant data based on cluster membership discussed
carlier, identified during phase two of the sequence
alignment procedure. As mentioned earlier, participants
are clustered based on similarities in viewing behaviour (i.e.,
viewing sequences). The results of the three summarisations
by participant clusters are displayed in Figure 13.

In other words, the following discussion of results and
conclusions are based on summarisations across all partici-
pants. Generally, the spatial trajectory patterns can be
described in terms of completed distances (i.c., long or
short moves) and/or movement headings (i.e., vertical,

horizontal and diagonal moves). The horizontal trajectories
at the bottom of each panel in Figure 13 are generally
related to reading the test question, even if the lines are not
displayed exactly over the respective text portion in the
above displays. This visual mismatch is dependent on the
aggregation algorithm used. Horizontal trajectories within
a row of maps suggest that participants are moving their
eyes in the suggested temporal sequence. Sequential
viewing behaviour is also indicated when horizontal
trajectories are connected by diagonals from the end of
one row of maps to the beginning of the next row below.
When playing back eye movement behaviours one can see
that diagonal moves are always performed in the forward
direction, while horizontal moves can be both performed
forwards and backwards. Vertical moves across map rows
suggest two things. Firstly, longer vertical moves (starting
or ending from the question) are performed when
participants initially read the test question and then start
inspecting the maps, or when eyes are returning to the test
question during the map exploration task. Second, shorter
vertical moves within and across map rows indicate spatial
exploration behaviours, for example when nearby maps are
inspected instead of following the suggested temporal
arrangement.

Visual pattern inspection suggests a couple of distin-
guishing features across behavioural clusters. ‘Spatial
search’ behaviour is depicted noticeably in the star-like
trajectory pattern shown in Cluster 1 in Figure 13a
(representing 30% of the participants). The centre of the
star is the second map from the left, in the centre row. A
similar star pattern is visible in Cluster 3 (8% of the
participants), and its centre at the same location (i.e., the
June map) as in Cluster 1. Cluster 2 shown in Figure 13b
includes the largest proportion of participants (62%), and
features dominantly horizontal trajectories. By animating
the eye movement behaviours for this cluster one can detect
that the horizontal trajectories include forward moves and
backtracking within map rows. A participant’s summarised
trajectory exhibiting this kind behaviour is shown in
Figure 1. Interestingly, the horizontal moves within the
rows are not only connected with diagonals in Cluster 2,
but also with vertical lines at respective row ends. When
inspecting these eye movements again by animation one can
see that people combine temporal and spatial search
strategies. The map sequences are looked at in reverse
temporal order in the middle row, perhaps to increase
spatial search efficiency.

These empirical findings on static small multiple displays
suggest the following design principles for providing
computationally equivalent animations: Animations should
not only provide a play ‘forward” button, and /or ‘forward’
sequencing interactivity, but also include backwards anima-
tion and reverse sequencing options, to provide at least
equally efficient inference affordances compared with small
multiples. Making SMMDs interactive, so that users can
rearrange the map sequence according to the spatial,
temporal, or spatio-temporal inference making tasks, and
respective knowledge extraction goals can alleviate layout
problems in static SMMDs.

In terms of methodology this research proposes a
combined geovisualisation and visual = geoanalytics
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Figure 11. Fixation pattern of same participant as in Figure 10

approach, to better quantify people’s inference making
processes from and with visuo-spatial displays. Considering
that eye-movement recordings are location-based, they can
be easily imported into an oft-the-shelf GIS or, as in our
case, a specifically developed visual geoanalytics tool. Eye
movements can be displayed and analyzed in more detail
with powerful spatial analytical tools in a similar fashion to
the display and analysis geographic movement data.
Geovisualisation methods are helpful for getting first
insights on inference behaviours of individuals, for example,
by simply being able to display gaze plots, and /or play back

Figure 12. Gaze plots for several test participants
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people’s gaze trails over the explored graphic stimuli.
Highly interactive visual geoanalytics toolkits such as
proposed by Andrienko ez al. (2007) provide an additional
excellent framework to more efficiently handling massive
fine grained spatio-temporal movement data, by summaris-
ing and categorising groups of behaviours. Empirical results
based on the methods described earlier can be additionally
linked to the more traditional success measures such as task
completion time and accuracy of response. For example, in
future work we will be exploring the potential relationship
between viewing strategies based on identified cluster
membership with the quality and speed of response.

CONCLUSIONS

A new concept, coined inference affordance, is proposed to
overcome drawbacks of traditional empirical ‘success’
measures when evaluating static visual analytics displays
and interactive tools. In doing so, we hope to respond to
the ICA Commission on Geovisualisation’s third research
challenge on cognitive issues and usability in geovisualisa-
tion, namely, to develop a theoretical framework based on
cognitive principles to support and assess usability methods
of geovisualisation that take advantage of advances in
dynamic (animated and highly interactive) displays
(MacEachren and Kraak, 2001). Furthermore, a novel
research methodology is outlined to quantify inference
affordance, integrating visual geoanalytics approaches with
sequence alignment analyses techniques borrowed from
bioinformatics. The presented visual analytics approach
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Figure 13. Summarised eye movements across participant clusters,
based on viewing behaviour: (a) movement cluster 1, (b) movement
cluster 2, (¢) movement cluster 3

focuses on information reduction of large amounts of fine-
grained eye-movement sequence data, including sequence
categorisation and summarisation.

Presented inference-making behaviours extracted from
eye movement records provide first support to the
contention that small-multiple displays cannot generally

be computationally or informationally equivalent to non-
interactive animations (in contrast to claims by cognitive
scientists cited above); the computational and informational
equivalence of displays do depend on the task, the informa-
tion extraction goal, and the decision-making context.

By applying the outlined framework to collected
empirical evidence on static small multiple displays, we
hope to provide a better understanding of how people use
static small-multiple displays to explore dynamic geographic
phenomena, and how people make inferences from static
visualisations of dynamic processes for knowledge con-
struction in a geographical context.
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