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Abstract

Most psychometric tests of spatial ability are paper-and-pencil tasks at the bfiguralQ scale of space, in that they involve inspecting,
imagining or mentally transforming small shapes or manipulable objects. Environmental spatial tasks, such as wayfinding or learning

the layout of a building or city, are carried out in larger spaces that surround the body and involve integration of the sequence of views

that change with one’s movement in the environment. In a correlational study, 221 participants were tested on psychometric measures

of spatial abilities, spatial updating, verbal abilities and working memory. They also learned the layout of large environments from

direct experience walking through a real environment, and via two different media: a desktop virtual environment (VE) and a

videotape of a walk through an environment. In an exploratory factor analysis, measures of environmental learning from direct

experience defined a separate factor from measures of learning based on VE and video media. In structural-equation models, small-

scale spatial abilities predicted performance on the environmental-learning tasks, but were more predictive of learning from media

than from direct experience. The results indicate that spatial abilities at different scales of space are partially but not totally dissociated.

They specify the degree of overlap between small-scale and large-scale spatial abilities, inform theories of sex differences in these

abilities, and provide new insights about what these abilities have in common and how they differ.

D 2005 Elsevier Inc. All rights reserved.
1. Introduction

There has been a long tradition of research on the

measurement and classification of individual differ-

ences in spatial abilities (e.g., Carroll, 1993; Eliot &
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Smith, 1983; Lohman, 1988; McGee, 1979). In this

literature, measures of spatial abilities have included

tasks such as mental rotation of shapes, solving mazes,

imagining the folding and unfolding of sheets of paper,

and finding hidden figures. These bsmall scaleQ psycho-
metric tests are similar insofar as they are all paper-and-

pencil tests, and almost all involve perceptually exam-

ining, imagining, or mentally transforming representa-

tions of small shapes or manipulable objects, such as

blocks or sheets of paper.

In contrast to small-scale spatial abilities, there have

been relatively few attempts to assess individual differ-

ences in larger-scale or benvironmentalQ spatial abili-
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ties. Environmental spatial tasks include learning the

layout of new environments, such as buildings or cities,

navigation in known environments, and giving and

interpreting verbal navigation directions (see reviews

by Evans, 1980; Gärling & Golledge, 1987; Liben,

Patterson, & Newcombe, 1981; Spencer, Blades, &

Morsley, 1989). One goal of the research project

reported below is to characterize the sources of indi-

vidual differences in environmental spatial tasks, asses-

sing whether performance of different environmental

spatial tasks reflects a single underlying ability or a

disparate set of abilities. The second goal is to examine

the extent to which processing of spatial information at

different scales of space reflects the same or different

underlying abilities, as articulated by Cooper and

Mumaw (1985): bTo what extent [do] common pro-

cesses and representations underlie skill in dealing with

large-scale space and spatial ability as measured by

standard aptitude tests?Q (pp. 91–92).
Fig. 1 diagrams different possible models of the

relationship between small-scale and large-scale spatial

abilities. The Unitary model assumes that spatial abil-

ities at the two scales of space are completely over-

lapping, as would be the case if they depended on

exactly the same cognitive processes. The Total Disso-

ciation model proposes that the two sets of abilities

depend on completely distinct cognitive processes.

The Partial Dissociation model proposes that the two

sets of abilities rely on some common processes, but

that ability at each scale of space depends on some

unique processes not shared by abilities at the other

scale of space. If this is the preferred model, we also
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Fig. 1. Four models of possible relations between
need to specify the amount of common variance and the

cognitive processes that are shared by the two sets of

abilities. The Mediation model proposes that the two

sets of abilities are completely dissociated, but that both

are related to a third ability that mediates the relation-

ship between large- and small-scale spatial ability.

1.1. Background literature

Although previous studies of spatial abilities have

not made strong claims that abilities at different scales

of space are either completely overlapping (Unitary

model) or completely dissociated (Total Dissociation

model), most studies emphasize either the commonali-

ties or the dissociations between these abilities. First, by

using bpictorialQ scale stimuli, such as images on paper

or computer monitors, to study large-scale spatial tasks

such as navigation, the majority of studies in the liter-

ature have implicitly adopted the Unitary model (Mon-

tello, 1993). The fact that almost all tests of spatial

abilities involve paper-and-pencil depictions of small

objects (Eliot & Smith, 1983) also reflects an implicit

assumption that all spatial cognition can be studied with

small-scale stimuli. Other research has addressed the

unitary model more explicitly. For example, many the-

ories of the evolution of sex differences propose that

differences in small-scale spatial abilities (e.g., mental

rotation) reflect different selection pressures for navi-

gational (large-scale) abilities between males and

females in evolutionary history (Gaulin, 1995; Kimura,

2000). One recent review (Jones, Braithwaite, & Healy,

2003) considers seven theories of the evolution of sex
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small-scale and large-scale spatial abilities.



2 Note that the converse is not necessarily true. That is, if two

measures are highly correlated, it does not necessarily imply that

they are based on common capacities and processes. Two tasks that

depend on different cognitive processes could be good predictors of

each other, for example if they are influenced by similar genetic and/

or environmental factors.
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differences in spatial abilities, all of which are based on

demands for the sexes to have different amounts of

mobility in the environment (e.g., for foraging, warfare,

or finding mates). These theories assume that large-

scale and small-scale spatial skills reflect the same

abilities, and are causally related.

In contrast, some other theorists have emphasized

the dissociations between the mental systems for pro-

cessing spatial information at different scales of space.

In comparing environmental space with the object

space of traditional space perception, Ittelson (1973)

was the first to point out that in contrast with objects,

environments are larger than the individual, allow view-

ing from multiple vantage points, and require locomo-

tion and information integration over time for their

apprehension. Several other researchers in cognition

and perception (e.g., Acredolo, 1981; Cutting & Vish-

ton, 1995; Freundschuh & Egenhofer, 1997; Gärling &

Golledge, 1987; Kuipers, 1982; Mandler, 1983; Mon-

tello, 1993; Montello & Golledge, 1999; Tversky, Mor-

rison, Franklin, & Bryant, 1999; Zacks, Mires, Tversky,

& Hazeltine, 2000) and some evolutionary psycholo-

gists (e.g. Silverman & Eals, 1992) have echoed this

distinction in theorizing that spatial entities at different

scales involve distinct cognitive structures and process-

es. These proposals are inconsistent with the Unitary

model in Fig. 1, and consistent with the dissociation

models, but do not specify whether the dissociation is

partial or complete.

Of particular importance to our work are the distinc-

tions between figural, vista, and environmental space

(Montello, 1993; Montello & Golledge, 1999). Figural

space is small in scale relative to the body and external to

the individual, and can be apprehended from a single

viewpoint. It includes both flat pictorial space and vol-

umetric object space (e.g., small, manipulable objects)

associated with psychometric tests of spatial ability.

Vista space is projectively as large or larger than the

body, but can be visually apprehended from a single

place without appreciable locomotion. It is the space of

single rooms, town squares, small valleys and horizons.

Environmental space is large in scale relative to the body

and bcontainsQ the individual. It includes the spaces of

buildings, neighborhoods, and cities, and it typically

requires locomotion for its apprehension (see Montello,

1993, for a discussion of other scales of space).

The neuroscience literature provides considerable

evidence that processing spatial information at different

scales of space involves different brain structures and

mechanisms. Whereas small-scale spatial tasks such as

mental rotation are associated primarily with activation

of the parietal lobes (see Kosslyn & Thompson, 2003,
for a recent review), learning and remembering the

layout of large-scale spaces is associated with proces-

sing in the hippocampus and surrounding regions in the

medial temporal lobes (e.g., Morris & Parslow, 2004).

Patients with various forms of topographical disorien-

tation, who are impaired in wayfinding and environ-

mental layout learning following brain lesions, do not

typically show impairments in small-scale spatial abil-

ities, such as mental rotation (Aguirre & D’Esposito,

1999). Parietal patients, showing typical impairments in

small-scale mental spatial manipulations, in turn, show

intact spatial updating during locomotion in large-scale

space (Philbeck, Behrmann, Black, & Ebert, 2000). In

an extensive review of the neuroscience literature, Pre-

vic (1998) proposed four bbehavioral realmsQ for spatial
behaviors, based on the sensorimotor systems involved

in various actions, such as reaching and locomotion.

These realms are quite tightly correlated with spatial

scale. They are: peripersonal (near-body space), focal

extrapersonal (the space of visual search and object

recognition), action extrapersonal (orienting in topo-

graphically defined space), and ambient extrapersonal

(orienting in earth-fixed space). Previc provides evi-

dence that that the four realms are largely associated

with distinct cortical networks: dorsolateral for periper-

sonal, ventrolateral for focal extrapersonal, ventrome-

dial for action extrapersonal, and dorsomedial for

ambient extrapersonal.

Studies of individual differences can provide impor-

tant insights into the relation between large-scale and

small-scale spatial cognition. If large- and small-scale

spatial tasks depend on common basic capacities and

processes, and there are individual differences in these

capacities and processes, then measures of spatial cog-

nition at different scales of space should be highly

correlated.2 In fact, previous individual differences

studies have generally reported only weak, if any, rela-

tions between large-scale and small-scale spatial abili-

ties. In a review of 12 studies of the relation between

large- and small-scale spatial abilities (Allen, Kirasic,

Dobson, Long, & Beck, 1996; Bryant, 1982; Goldin &

Thorndyke, 1982; Juan-Espinosa, Abad, Colom, &

Fernandez-Truchaud, 2000; Kirasic, 2000; Lorenz,

1988; Meld, 1985; Pearson & Ialongo, 1986; Rovine

& Weisman, 1989; Sholl, 1988; Waller, 2000; Walsh,

Krauss, & Regnier, 1981), Hegarty and Waller (2005)
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reported that there were only two studies in which the

median correlation exceeded .3. The majority of these

correlations were not statistically significant.

Previous factor-analytic studies also support the sep-

arability of small-scale and large-scale spatial abilities.

Lorenz (1988; Lorenz & Neisser, 1986) administered

several different measures of environmental spatial

ability, including giving directions, recalling a route,

and pointing to local and distant locations. In explor-

atory factor analyses, environmental abilities loaded on

different factors than pencil-and-paper measures of spa-

tial abilities. A similar dissociation between large- and

small-scale spatial abilities was found by Pearson and

Ialongo (1986). In the most extensive individual differ-

ences study to date, Allen et al. (1996) measured per-

formance on six psychometric spatial tests (Surface

Development, Cube Comparison, Hidden Figures, Ge-

stalt Completion, Map Memory and Map Planning) and

seven measures of learning of an environment from a

walk through a small city. Five of the measures of

learning (scene recognition, sequencing scenes along

the route, placement of landmarks on a map of the

route, intra-route distance estimates and route reversal)

defined a large-scale learning factor that Allen et al.

called btopological knowledge.Q This factor was unre-

lated to the spatial ability factor defined by the psycho-

metric tests. However another factor called bspatial
sequential memory,Q defined by measures of maze

learning and maze reversal measured in a laboratory

task, was related to both the psychometric test factor

and the topological knowledge factor and therefore

mediated the relationship between these two factors.

Other measures of large-scale learning, ability to

make straight-line distance estimates and direction esti-

mates, did not load on the topological knowledge factor

or on any other factor. There was again no direct

relationship between these measures and small-scale

spatial ability. However, in one experiment Allen et

al. found that a measure of perspective taking mediated

the relationship between paper-and-pencil measures of

spatial ability and the measure of direction estimation

(ability to point to non-visible locations in a learned

environment).

In summary, previous individual differences research

is inconsistent with the Unitary model in Fig. 1. Some

individual differences studies are consistent with the

Total Dissociation model while others are consistent

with the Partial Dissociation model but suggest that

the amount of overlapping variance between small-

and large-scale spatial tasks is relatively small. Finally,

the results of Allen et al. (1996) are consistent with the

Mediation model depicted in Fig. 1, suggesting that
other abilities mediate the relationship between small-

scale spatial abilities and different aspects of large-scale

learning.

1.2. Information processing analysis of large-scale

spatial learning

An analysis of the perceptual and cognitive process-

es involved in large-scale spatial tasks can help us

identify the possible sources of variance in those

tasks, and inform questions of the amount and nature

of the dissociation between large- and small-scale spa-

tial abilities. The information processing approach has

been used productively in the analysis of small-scale

spatial abilities, to reveal that these abilities rely on

differences in speed of encoding and transforming spa-

tial information, spatial working memory capacity, and

strategies (Hegarty & Waller, 2005; Just & Carpenter,

1985; Lohman, 1988; Pellegrino & Kail, 1982; Shah &

Miyake, 1996). Although large-scale spatial cognition

involves many complex activities, including learning

the layout of new spaces, using existing knowledge of

an environment to plan routes and navigate, and com-

municating about space, it is necessary to restrict our

focus in an information-processing analysis. Consistent

with previous individual-difference studies (Allen et al.,

1996; Bryant, 1982; Goldin & Thorndyke, 1982; Kira-

sic, 2000; Pearson & Ialongo, 1986), we focus on

ability to learn the layout of novel environments.

In studies of large scale learning, participants are

given a controlled amount of exposure to a large scale

environment, in our study by being led on a route

through the environment, being shown a video, or

interacting with a desktop virtual environment. They

are tested on various boutcome measuresQ of learning,
such as route retracing, pointing to non-visible loca-

tions, straight-line distance estimates and map sketch-

ing. Fig. 2 shows a preliminary analysis of the

representations and processes involved in learning the

layout of an environment and performing outcome

measures of that learning. First, the layout of the envi-

ronment must be encoded from the various sensory

inputs available. This leads to an internal representation

of the environment, which might be a route represen-

tation (i.e., a representation of the sequence of land-

marks encountered and movements made in locomoting

through the environment) or a survey representation

(i.e., a two-dimensional representation of the configu-

ration of the environment). The internal representation

cannot be measured directly, but must be inferred from

performance on the outcome measures. Furthermore the

performance of a particular outcome measure (e.g.,
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cognitive map to perform different outcome measures.
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direction estimation) may involve transformations or

inferences from a person’s initial representation of the

environment that occur either when the person is ex-

posed to the learning medium, or when his or her

knowledge of the environment is being tested (Mon-

tello, Waller, Hegarty, & Richardson, 2004). A task

analysis of large-scale spatial learning must therefore

specify the cognitive processes involved both in con-

structing an internal representation of an environment

from exposure to that environment and in transforming

that internal representation to perform different out-

come measures (see Fig. 2).

Based on the task analysis, we hypothesize three

main sources of individual differences in large-scale

spatial cognition: ability to encode spatial information

from sensory experience, ability to maintain a high-

quality internal representation of that information in

memory, and ability to perform spatial transformations

in order to make inferences from this spatial informa-

tion. First, learning the spatial layout of an environment

depends on the ability to encode spatial information

from the various sources of sensory information pro-

vided in the learning experience. Vision is probably the

main sensory modality in humans for sensing the spa-

tial layout of an environment. However, when one

directly navigates through a real environment, one

also senses one’s own movement through non-visual

senses. Movement is sensed by the vestibular system,

which provides information about linear and angular

accelerations, kinesthesis, which senses movement of

the limbs, and efference copy, which is based on signals

from the central nervous system to the muscles. Recent

research has indicated that these senses contribute to

spatial updating and learning of spatial layout indepen-

dently of vision (Chance, Gaunet, Beall, & Loomis,
1998; Klatzky, Loomis, Beall, Chance, & Golledge,

1998; Waller, Loomis, & Haun, 2004; but see Waller,

Loomis, & Steck, 2003), so that it is likely that indi-

vidual differences in learning from these senses also

make an independent contribution to variability in

learning of spatial layout. (Spatial layout can also be

sensed to some extent by audition, but this will not be

addressed in the current study).

Second, various aspects of memory affect the quality

of the internal representations or cognitive maps con-

structed from a given amount of exposure to an envi-

ronment. Working memory is a key factor underlying

environmental learning, because environmental spaces

cannot be apprehended in a single view (e.g., Ittelson,

1973; Montello, 1993), and these spaces must therefore

be learned by maintaining information over time. The

format of the memory constructed from exposure to an

environment is another possible source of variance.

Information might be retained in verbal working mem-

ory, as a sequence of route directions (Allen et al.,

1996) or in spatial working memory, as a configuration.

Sex differences in large-scale spatial cognition are often

characterized as differences in the format of the internal

representation, with females depending more on route

representations and males depending more on config-

ural representations of space (Lawton, 1994; Lawton,

Charleston, & Zieles, 1996; Montello, Lovelace et al.,

1999). Finally metric precision is an important way in

which spatial memories differ, and can have a large

influence on the types of inferences made from mem-

ories of environmental spaces.

Third, ability to infer new information from spatial

memories is clearly essential to many large-scale cog-

nitive tasks. When one learns spatial layout from direct

experience and visual media, one encounters the envi-
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ronment from a sequence of viewpoints as one moves

through the environment. A memory of this sequence of

viewpoints and movements alone is not sufficient for

performing such tasks as estimation of straight-line

distances and directions between landmarks that were

encountered at different stages of the route. Therefore

performance on these tasks requires an inference from

the information that was directly perceived.

Encoding, memory, and inference processes are

highly related. For example, the ability to infer the

straight-line direction or distance between landmarks

from a route representation depends on the ability to

encode metric information about distances and turns

between landmarks and to maintain this information

in working memory. Integration over a section of

route, in turn, changes the nature of the spatial memory

from a sequential route representation to a configural

representation. Finally, integration over sections of a

route is less effortful when one physically moves in the

environment (e.g., Klatzky et al., 1998; Loomis,

Klatzky, Golledge, & Philbeck, 1999; Waller, Montello,

Richardson, & Hegarty, 2002) so that encoding of self-

motion on the basis of body-based senses may facilitate

the process of inferring spatial configuration from the

sequence of viewpoints encountered as one moves

through an environment.

1.3. The present study

1.3.1. Sources of variance in large-scale learning

In the present study, we measured people’s ability to

learn the layout of three different novel environments,

one from direct experience walking in the environment,

another from watching a video of a route through the

environment, and a third by interacting with a desktop

virtual environment. After each of these learning

experiences, we administered three different measures

of learning: estimation of the direction between land-

marks in the environment, estimation of the straight-

line distance to non-visible landmarks, and map sketch-

ing. Compared to other common measures of spatial

learning (e.g., scene recognition, landmark sequencing,

and route retracing), these tasks cannot be performed on

the basis of a route representation alone, and depend

more on metric and configural knowledge of the envi-

ronment (see Kitchen, 1996; Montello et al., 2004;

Newcombe, 1985).

We can isolate the different sources of variance

identified in our information-processing analysis by

comparing patterns of performance across different

learning experiences and different outcome measures.

Learning spatial layout from direct experience, video,
and desktop virtual environments (VEs) is similar in

the sense that in all cases learning depends on per-

ception of a sequence of viewpoints as one moves

through the environment, memorization of that se-

quence of viewpoints in memory and updating of

one’s position in the environment on the basis of

visual cues including self-to-object relations and op-

tical flow. In all of these learning experiences, the

ability to compute straight-line distances and direc-

tions relies on the ability to make inferences from the

memorized sequence of viewpoints encountered on

the route.

The different learning experiences also vary in im-

portant ways. First, although all include visual infor-

mation, the field of view is greater in real-world

navigation than in a video or virtual environment, so

that optic flow information is less available in the visual

media. Second, when learning (and being tested) in a

real environment, as opposed to a video or desktop

virtual environment, updating of body position in the

environment can be sensed by vestibular input and

kinesthesis in addition to vision. Finally, motion is

more active and self-directed in a real environment

(and to some extent in a desktop virtual environment),

whereas in watching a video, movement through the

environment is more passive. When motion is self-

directed, efference copy of the muscle commands is

an additional source of information for updating of self-

motion. Because of these differences, learning from

different media makes greater or lesser demands on

different basic cognitive processes, such as ability to

update one’s position in an environment from visual

information alone. On the basis of our task analysis,

therefore, we hypothesize that ability to learn from real

world experience and from visual media will be par-

tially dissociated.

Because a correlational study of this type requires

that all participants perform all of the same measures, it

was necessary to have participants learn three different

environments from the three different learning experi-

ences. These environments necessarily had different

layouts. To minimize confounds due to the shape of

the environments we used three environments that were

made up of mostly straight segments and right-angled

turns. The environments learned from direct experience

and from a video were of similar complexity. The

virtual environment was simpler, because previous re-

search (Richardson, Montello, & Hegarty, 1999) and

our pilot studies indicated that learning a complex

layout from a desktop virtual environment was more

difficult and might lead to a floor effect unless the

environment was simplified.
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Performing different outcome measures based on an

internal representation of an environment can also be a

source of variance in measures of large-scale learning

(see Fig. 2). Whereas all outcome measures depend on

how well the learner has memorized the sequence of

views that he or she encountered while learning the

environment (so that more accuracy and metric preci-

sion in that memory will lead to better performance),

outcome measures depend on different breadout pro-
cessesQ and can require individuals to make inferences

that were not made at the time of learning (Kitchen,

1996; Montello et al., 2004; Newcombe, 1985). For

example, ability to point accurately to non-visible loca-

tions or to estimate straight-line distances to these

locations requires ability to infer a spatial configuration

from information that is encoded as one traverses an

environment, as well as metric knowledge of the seg-

ments and turns along the route. Map sketching may be

less dependent on the internal integration of informa-

tion in memory, in that a relatively accurate map can be

sketched from an internal route representation, as long

as metric distances and directions are represented, such

that the integration over segments and turns of the route

occurs when the route representation is externalized in

the sketching process. Furthermore, it is possible to

draw an accurate map from a verbally encoded memo-

ry, as long as suitably precise metric information

is included in the verbal memory. Finally ability to

represent one’s current heading in a memorized envi-

ronment during testing is necessary for pointing perfor-

mance, but not for straight-line distance estimates or

map drawing.

Because of the cognitive demands made by different

outcome measures (Kitchen, 1996; Montello et al.,

2004; Newcombe, 1985), we also consider the possi-

bility that different outcome measures may not reflect

the same spatial abilities. If all three measures reflect

the same underlying ability to acquire or infer config-

urations from spatial information learned over time,

they should load on the same factor. In contrast, if

estimating distances, estimating directions, and map

drawing rely on abilities associated with different task

demands, they should define different factors.

1.3.2. Relations between large- and small-scale

abilities

The information processing analysis in Fig. 2 sug-

gests that large-scale spatial learning depends on pro-

cesses of encoding spatial information from visual

input, and maintaining and mentally transforming spa-

tial representations, which may be shared with small-

scale spatial tasks (e.g., mental rotation and finding
hidden figures), while also depending on processes

such as spatial updating that are not shared with small

scale tasks. To test this information-processing model,

we examined the relation between large-scale learning,

and measures of basic capacities and processes in visu-

al–spatial information processing, including psychomet-

ric tests of spatial ability and a test of spatial working

memory. Although they come from different research

traditions, tests of spatial ability are highly related to

tests of visual–spatial working memory (Miyake,

Rettinger, Friedman, Shah, & Hegarty, 2001; Shah &

Miyake, 1996). In the current study, we are concerned

with the variance that they share, i.e., ability to encode,

maintain and mentally transform visual spatial informa-

tion. In addition to psychometric tests and working

memory, we include measures of perspective taking

ability to examine Allen’s alternative model in which

perspective taking mediates the relation between small-

scale spatial ability and ability to acquire configural

knowledge of an environment.

We also included a measure of self-reported sense-

of-direction. Such measures are highly correlated with

tasks that involve reorienting oneself in the environ-

ment (Bryant, 1982, 1991; Kozlowski & Bryant, 1977;

Sholl, 1988) and measures of spatial knowledge ac-

quired from direct experience (Hegarty, Richardson,

Montello, Lovelace, & Subbiah, 2002; Lorenz & Neis-

ser, 1986; Montello & Pick, 1993). In contrast, they are

typically less highly correlated with measures of spatial

knowledge acquired from maps and very weakly cor-

related with paper-and-pencil measures of spatial ability

(Bryant, 1982; Hegarty et al., 2002; Sholl, 1988). Self-

report sense-of-direction is therefore largely indepen-

dent of small-scale spatial ability and appears to reflect

an ability to update one’s location in space as a result of

self-motion.

Finally, we measured verbal ability, verbal working

memory and abstract reasoning ability. To the extent

that environmental information is coded verbally rather

than spatially in memory, verbal abilities, including

verbal working memory (cf. Shah and Miyake, 1996)

should be predictive of performance of large-scale spa-

tial tasks. To the extent that environmental learning

reflects general intelligence rather than spatial ability,

abstract reasoning ability should be predictive of large-

scale spatial tasks.

We hypothesize that all forms of spatial layout

learning will be predicted by visual encoding abilities,

spatial working memory, and spatial transformation

abilities as measured by small-scale spatial ability mea-

sures. We expect that learning from direct experience

will also be predicted by measures of spatial updating
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and encoding based on body-based senses. Because

spatial updating involves relatively little effort when

body-based senses and optic flow information are avail-

able (Klatzky et al., 1998; Loomis et al., 1999; Waller et

al., 2002) learning from direct experience should be less

dependent on individual differences in visual encoding,

working memory and effortful spatial transformation

abilities than learning from visual media. Therefore

we predict that small-scale spatial abilities will be less

predictive of performance when learning is based on

direct experience. Finally, although the focus of this

study is on individual differences in spatial cognition,

we also examine sex differences specifically, to inform

theoretical debate on their nature and causes.

2. Method

2.1. Participants

Two hundred and eighty-six participants took part in

the study. They were recruited by announcements in a

local newspaper and on flyers that were posted around

the UCSB campus. They were paid $40 for their par-

ticipation, which took approximately 3.5 h, spread over

two sessions. Fifty-eight participants had missing data

on more than one of the variables of interest in the

study (most of these failed to return for the second data-

collection session) and 7 reported that they were al-

ready very familiar with one of the environments stud-

ied. The data from these participants were not included

in the analyses.

Of the 221 participants included in the final sample,

135 were female, 83 were male, and information about

the sex of 3 participants was not recorded. Their mean

age was 22.0 years (SD=7.1) and they had been on the

UCSB campus 4.1 (SD=4.7) quarters on average. Al-

though the ages of participants ranged from 17 to 59

years, most were students at area colleges and 80.6%

were between 17 and 22. They rated their prior famil-

iarity with the environment used as a measure of real

world learning (Ellison Hall) as 1.9 on average

(SD=1.1, range=1–5) and with the environment used

in our measure of learning from a video (the Santa

Barbara courthouse) as 1.6 (SD=1.1, range 1–5), on a

scale of 1 (bvery unfamiliarQ) to 7 (bvery familiarQ).

2.2. Tasks and measures

2.2.1. Demographics questionnaire

Participants completed a demographics question-

naire, which asked them to indicate their age, sex,

SAT Verbal and Mathematics scores, and the number
of quarters they had been at UCSB. The questionnaire

also asked them to estimate the number of times they

had visited the Santa Barbara courthouse (depicted in

the video described below) and how often they had

visited a number of different locations in Ellison Hall

on the UCSB campus. Finally they were asked to

indicate their overall familiarity with Ellison Hall and

the Santa Barbara courthouse.

2.2.2. Measures of visual–spatial abilities

Four measures of visual–spatial abilities were ad-

ministered, as follows.

1. The Group Embedded Figures Test (Oltman, Raskin,

& Witkin, 1971) measures ability to encode a spatial

pattern and recognize it in a complex figure. In this

test, participants are given a sheet showing several

simple 2-D geometric figures. On each trial they are

shown a complex 2-D figure, and their task is to

locate the simple figure within the complex figure

and to trace it in pencil. There are three sections of

the test: an initial practice section with 7 items,

lasting 2 min, and two sections with 9 items each,

for which participants are allotted 5 min apiece. The

internal reliability of the test is .82.

2. The Vandenberg Mental Rotations Test (Vandenberg

& Kuse, 1978) is a measure of spatial visualization

ability. In this test, participants view a three-dimen-

sional target figure and four test figures. Their task is

to determine which of the test figures are rotations of

the target figure as quickly and accuracy as possible.

It consists of two sections of 10 items, for which

participants are allotted 3 min each. Its internal

reliability is .88.

3. The Arrow Span Test, adapted from Shah and

Miyake (1996), measures ability to maintain spatial

information in working memory. This test was pre-

sented on a PC-compatible 486 computer running

MEL software (Schneider, 1990). On each trial, a set

of arrows was presented on the computer screen, one

at a time, in one of eight possible directions (upright

and increments of 458 from upright). The sequence

of directions was randomized for each trial set and

each participant. After all the arrows of a set were

presented, the participant’s task was to indicate the

directions of the arrows in their order of presenta-

tion. Participants indicated their answers by typing

the keys on a standard numeric keypad. The numer-

als on the keys were covered with arrows indicating

directions; d7T was 458 to the left from upright,

d8T was upright, d9T was 458 to the right from

upright, and so on (d5,T in the middle, was not
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used). The test consisted of 15 sets of arrows, three

at each level ranging from 2 to 6 arrows. Participants

completed all of the items on the test. The dependent

measure was the number of arrows identified in the

correct order across the 15 trials (maximum possible

score=60). The internal reliability of the this mea-

sure is .78 (Shah and Miyake, 1996).

4. A test of perspective-taking ability, based on the

stimulus materials of Huttenlocher and Presson

(1973, 1979), measures ability to encode, maintain

and transform spatial representations at the vista

scale of space. Four objects (a lamp, a plant, a

trash can, and a box) were placed at the center of

each wall in an 8-m square room. Participants stood

in front of one object looking into the center of the

room and were instructed to learn the locations of

the 4 objects. They were allowed as much time as

they needed, which was usually less than 3 min.

After viewing the objects, participants sat at an

IBM-compatible 486 computer, out of view of the

objects. On each trial they were asked to imagine

standing in front of one of the objects facing the

middle of the room, and to point to another object as

quickly and accurately as possible. They pointed by

pressing arrow keys (for forward, right, and left) on

the computer keyboard. There were 12 trials, three

for each object, which were self paced and presented

in a random order. We computed two measures of

performance, the number of items answered correct-

ly and the average reaction time. Measures of inter-

nal reliability (Chronbach’s alpha) were .74 for the

accuracy measure and .61 for the reaction time

measure.

2.2.3. Measure of self-reported sense of direction

Participants were administered the Santa Barbara

Sense-of-Direction Scale, which consists of 15

Likert-type items adapted from previous self-report

scales of environmental spatial abilities (Hegarty et

al., 2002). Each item was a self-referential statement

about some aspect of environmental spatial cognition;

participants responded by circling a number from 1

(bstrongly agreeQ) to 7 (bstrongly disagreeQ). The items

are phrased such that approximately half are stated

positively, and half negatively. An example of a pos-

itively stated item is bI am very good at judging

distancesQ; an example of a negatively stated item is

bI very easily get lost in a new city.Q In scoring,

positively stated items were reversed so that a higher

score indicates a better sense-of-direction. Sums of the

15 items were used for the analyses. The internal

reliability of the scale is .88.
2.2.4. Measures of verbal and reasoning abilities

We included two measures of verbal intelligence (a

vocabulary test and a test of verbal working memory).

1. Extended Range Vocabulary Test–V3 (Ekstrom,

French, Harman, & Derman, 1976) is a test of

verbal ability. On each trial, participants are given

a target word, and their task is to select from five

other words the one that is closest in meaning to the

target word. One section of the test was adminis-

tered, with 24 items, for which participants were

allotted 6 min. Reliability estimates for this test

range from .76 to .89 for different samples (Ekstrom

et al, 1976).

2. Reading Span Test (Daneman & Carpenter, 1980)

measures verbal working memory. In this task, par-

ticipants read a set of unrelated sentences (each

printed on an index card) aloud one at a time and

recall the final word of each sentence at the end of

the set. Participants are presented sentences in sets

of increasing size, starting from two sentences per

set, finishing at five sentences per set. There are 20

sentence sets in this test, five sets for each set size.

A participant is scored as passing a level (set size) if

he or she gives correct answers to at least four of

the five items at that level and is given half credit

for producing only three correct answers at that

level. The final score is the highest level at which

the participant passed the test or received half cred-

it. For example, if a participant answered all the

items correctly for a set size of two, four of the

items correctly for a set size of three, and three of

the items correctly for a set size of four, he or she

would be assigned a reading span of 3.5. The test is

ended when a participant gives correct answers to

no more than two sets at a given level. Its internal

reliability is .85 (Shah & Miyake, 1996).

3. Abstract Reasoning Test, Form S (Bennett, Sea-

shore, & Wesman, 1972) is a measure of non-verbal

reasoning, which is highly related to general intelli-

gence. Each has four figures that form a series.

Participants select from another set of five figures

the one which would be the next item in the series.

Participants are allowed 25 min to complete 50

items. Reliability estimates for this test range from

.85 to .95 for different samples (Bennett et al, 1972).

2.2.5. Spatial learning from navigation directly in a

real environment

Participants learned the layout of a route through

two floors of a building on the UCSB campus (Ellison

Hall), along with the locations of 8 landmarks on that
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route. Shown in Fig. 3, the route covered approxi-

mately 300 ft and took about 6 min to traverse. The

experimenter first led each participant through the

building, stopping at each landmark to point it out

and name it. After traversing the route once, the

participant was taken outside the building and back

to the start of the route for testing. The experimenter

again led the participant along the route and at each of

the 8 landmarks, instructed him or her to make

straight-line distance and direction judgments to two

other landmarks that were not visible from that loca-

tion, for a total of 16 distance and 16 direction

estimates. Distance estimates were made directly in

feet. Direction estimates were made by means of a

circular pointing dial (see Montello, Richardson,

Hegarty & Provenza, 1999), described above. In mak-

ing distance and direction judgments between land-

marks on different floors of the building, participants

were instructed to ignore the vertical dimension. After

completing all estimates on the route, participants

drew a sketch map of the route including the locations

of the 8 landmarks.

2.2.6. Spatial learning from navigation in a desktop

virtual environment (VE)

Participants learned the layout of a single-floor

route depicted in a desktop VE, along with the loca-

tions of 4 landmarks on that route. The VE was con-

structed using the Duke Nukem 3D game engine, a

desktop virtual-reality type adventure game created by
3D Realms Entertainment. The environment was a

long hallway with six segments, connected by 908
turns (see Fig. 4). Participants traversed the route

using the forward, right, and left arrow keys on the
F

o
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keyboard. They first spent time in a practice environ-

ment to become familiar with the interface. In this

practice environment, participants moved along a

square-shaped route and were informed that one com-

plete circuit was 100 ft (to give them a sense of scale

for the environmental learning task). They then tra-

versed the test route twice, in response to verbal

instructions by the experimenter, who pointed out the

4 landmarks in the environment as they were encoun-

tered. Each traversal of the route took approximately 2

min (the maximum walking speed in the VE was 4.8

km/h). On the third traversal, participants were stopped

at each landmark and instructed to make distance and

direction judgments to two other landmarks, for a total

of 8 distance and 8 direction estimates. Estimates were

collected as for the real-environmental task, and parti-

cipants also drew a sketch map of the virtual route with

its 4 landmarks.

2.2.7. Spatial learning from viewing a videotaped

environment

Participants learned the layout and locations of 7

landmarks in a local building (the Santa Barbara Court-

house) by viewing a videotape. The videotape lasted 5

1/2 min and was made by walking a route through two

floors of the building using a handheld Hi8 camera.

Each landmark was indicated by stopping, pointing the

camera at the landmark, and naming it aloud. The

videotaped route is shown in Fig. 5. Participants viewed
Fig. 5. Map of the environment learned from a video
the video twice on a monitor mounted in the corner of

the room, and faced the video during both the learning

and testing phases of this task. After the second view-

ing, the video was replayed for testing purposes. This

time, the video was paused at each landmark and

participants made direction and distance judgments to

two of the other landmarks (a total of 14 distance and

14 direction judgments). Estimates were collected as for

the real- and VE tasks, and participants also drew a

sketch map of the video route with its 7 landmarks. For

each direction judgment, participants were given a

circle with a straight line pointing downwards from

the center of the circle. They were instructed to point

the line towards themselves and to draw an arrow on

the circle indicating the direction to the landmark in

question.

2.2.8. Scoring of the environmental learning measures

Three dependent measures were scored for each of

the environmental-learning tasks: distance estimates,

direction estimates, and sketch maps. The score for

the distance estimates was the correlation of a partici-

pant’s estimates across trials with the correct distances

for these trials. A participant who accurately estimates

distances proportionately across trials would therefore

receive a high correlation. We advocate this measure of

relative distance accuracy over a measure of absolute

distance accuracy because individuals have varying

conceptions of standard distances, such as a foot (Mon-
tape, showing the locations of the landmarks.
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tello, 1991).3 Correlations of estimated with correct

distances were transformed to reduce deviations from

normality using Fisher’s r-to-z transform.

Direction estimates were scored as the mean abso-

lute error in degrees (absolute deviation of pointing

direction from the correct direction) across trials. Sep-

aration of absolute error into constant and variable

errors has been advocated for experimental studies

(Montello, Richardson et al., 1999; Schutz & Roy,

1973). However we have argued that absolute error

provides the best summary measure of individual

differences in direction estimation (Hegarty et al.,

2002) because it best predicts whether a person

would be closest to a correct answer on a given

trial, an aspect of performance that requires both low

constant error and low variable error, on average. For

example, one would not consider a person to have

high spatial ability if he or she had a large bias

(constant error) in pointing to targets but little vari-

ability, or if his or her estimates always centered on

the correct direction but were highly variable. Reli-

ability estimates (coefficient alphas) for the direction

estimation measures were .85 for learning from direct

experience, .84 for learning from videotape, and .66

for learning from the VE.

Sketch maps were scored by counting the number

of qualitative errors made in drawing the maps. Qual-

itative errors included the number of landmarks omit-

ted (based on the landmarks pointed out to participants

during the learning phase), the number of missing or

additional segments of the route, and the number of

turns that were qualitatively in the wrong direction

(i.e., to the left instead of the right). For maps of the

Ellison Hall and Courthouse routes, each of which

traversed two floors of a building, we counted an

additional error if the two floors were not aligned

approximately correctly on participants’ maps. Al-
3 With the correlation metric being used here, what is computed is

a single correlation across several trials (path segments). Measures

of internal consistency are problematic in that the btrialsQ in this case

are necessarily dependent on each other, so that if the estimate of

one segment is large, this affects how the estimate of another

segment is treated by the correlation metric. We computed split-

half reliabilities for the correlation measures. This is a less than ideal

as a way of estimating reliability, however, in that each bhalfQ that
makes up the split-half measure has half as many items as the whole

scale. The split-half reliabilities of the three distance scales are .43

(direct-experience condition), .44. (video condition), and .16 (VE

condition). The fact that the distance measures correlated more

strongly with other measures in our data set, such as direction

estimates for the same environments (see Table 2), is evidence

that they are more reliable measures than suggested by these low

reliability coefficients.
though this scoring system did not measure precise

metric deviations of the sketch maps from the correct

spatial layout, good sketch map performance in this

scoring scheme requires sophisticated knowledge of

spatial layout, especially to correctly align the two

floors in the real and videotaped environments. The

errors were summed to produce a measure of sketch-

map performance for each participant. Inter-rater reli-

ability, based on two independent codings of 30 sketch

maps, was .87.

2.3. Procedure

Participants were tested in two sessions. In the first

session, they were tested in groups of up to 12 at a time;

in the second session they were tested individually.

Tasks were included in one or the other session based

on whether they could be administered in groups or

required individual administration. The tasks were ad-

ministered to all participants in the same order, as is

customary in individual-differences studies, to mini-

mize any measurement error due to participant-by-

order interactions.

The first session took place in a large laboratory

room, approximately 8 m square. Participants sat at

tables with wooden barriers dividing the tables into

four partitions, which prevented them from seeing

others’ responses. They first completed the demo-

graphics questionnaire, followed by the SBSOD.

They were then administered the Group Embedded

Figures test followed by the Extended Range Vocabu-

lary test, according to the standard instructions for

these tests. Then all participants were shown the vid-

eotape of the Courthouse and performed the spatial

learning tests based on it. Finally, participants were

administered the Vandenberg Mental Rotation Test in

the group session, followed by the Abstract Reasoning

test.

For the second session, participants arrived at the

same laboratory alone. They first performed the per-

spective-taking test, followed by the test of spatial

learning from the desktop VE. Then they were led out

of the laboratory to the entrance of Ellison Hall and

performed the test of spatial learning from the real

environment. Next they performed two trials of a

blindfold updating task which will not be reported

on in this paper, because we concluded in retrospect

that two trials were not sufficient to provide an

adequate measure of this ability. Finally, participants

were brought back to the laboratory and administered

the Arrow Span test, followed by the Reading Span

test.
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3. Results

3.1. Descriptive statistics

Because the multivariate techniques used in this

study assume normal distributions and are sensitive to

extreme outliers, we screened our data as follows. For

each variable, any observations with values that

exceeded 3 standard deviations from the mean were

set to be equal to 3 standard deviations from the mean

(winsorized). This conservative procedure allowed us to

retain extreme observations, important in an individual

differences study, while minimizing the effects of these

observations. This procedure affected less than .007 of

the observations across the 18 variables of interest in

the study.

Descriptive statistics for the measures are included

in Table 1. Note that the standard deviations of the

learning measures did not differ appreciably for learn-

ing from different experiences, indicating that there
Table 1

Descriptive statistics for variables in the study

Variable Range Mean SD Skewness Kurtosis

Visual–spatial abilities

Embedded Figures Test 0–18 12.4 4.7 �0.9 0.0

Vandenberg MRT 5–39 19.7 6.9 0.5 0.1

Arrow Span Test 29–60 48.6 6.6 �0.7 0.1

Perspective taking

Accuracy 2–12 10.8 1.8 �2.2 6.0

Reaction time (s) 2.3–16.5 5.7 2.6 1.7 3.5

Self-reported sense of direction

SBSOD 1.6–6.0 3.6 1.0 0.4 �0.4

Verbal/general abilities

Vocabulary 2.4–23.0 9.8 4.7 0.3 �0.4

Reading Span Test 1.0–4.5 2.4 0.7 0.6 0.7

Abstract Reasoning Test 23 – 50 40.9 5.9 �0.8 0.3

Learning from direct experience:

Direction estimation 10–101 38.7 20.8 0.6 �0.4

Distance estimationa � .49–.97 0.38 0.31 �0.2 0.7

Map sketching 0–7 1.5 2.0 1.3 0.8

Learning from video

Direction estimation 9 – 137 56.3 26.9 0.2 �0.5

Distance estimationa � .57–.87 0.33 0.28 �0.3 �0.6

Map sketching 0 – 7 1.6 1.9 1.0 0.3

Learning from VE

Direction estimation 5–110 45.5 21.6 0.5 0.1

Distance estimationa � .45–.91 0.32 0.30 �0.2 �0.7

Map sketching 0–4 0.9 1.2 1.2 0.6

a Measures of distance estimation are correlations of a participant’s

estimates across trials with the correct distances for those trials.

Correlations were subjected to an r-to-z transform for all subsequent

analyses.
were substantial individual differences in all measures

of environmental learning. Several of the measures

(e.g., direction estimation and map sketching) are

based on errors; therefore higher scores on these

items indicate less ability. For ease of interpretation,

these measures were transformed (by changing the sign

of the variables) so that higher scores indicate more

ability, and the transformed scores were used for the

correlational analyses, factor analysis and structural

equation models. About half of the subjects (48.9%)

made no errors on the perspective-taking test (number

of errors ranged from 0 to 10), so that the distribution

of observations on this measure departed considerably

from normality. A new dichotomous variable was

computed and used in all further analyses, such that

participants were assigned a value of 1 if they made no

perspective-taking errors, and a value of 0 if they made

at least one error (for the resulting variable Mean= .49,

SD=.50, Skewness= .05, Kurtosis=�2.02). The mea-

sure of reaction time on the perspective-taking test was

subjected to a log transformation, as is customary to

reduce the influence of very long times (for the trans-

formed variable, Mean=1.65, SD=.40, Skew-

ness= .56, Kurtosis=0.00).

3.2. Correlations

Correlations between the measures are given in

Table 2. All but one correlation are positive, indicating

that, in general, the ability measures are positively

related. Consistent with previous studies (Allen et al.,

1996; Pearson and Ialongo, 1986), correlations of

paper-and-pencil spatial abilities (the Embedded Fig-

ures Test and the Vandenberg Mental Rotation Test)

with measures of learning from direct experience are

relatively low (ranging from .11 to .28); correlations of

self-report sense-of-direction with these measures are

higher (ranging from .34 to .45) (cf. Bryant, 1982,

1991; Kozlowski and Bryant, 1977; Montello and

Pick, 1993). In contrast, measures of paper-and-pencil

spatial ability are correlated more highly with learning

from the video (range= .16 to .46) and the VE

(range= .08 to .45). The self-report measure is correlat-

ed less with learning from the video (range= .23 to .34)

or the VE (range= .20 to .24) than with learning from

direct experience (range= .36 to .46).

3.3. Statistical procedure for the multivariate analyses

The goals of the multivariate analyses were to

examine whether performance of different environmen-

tal tasks reflect a single underlying ability or a dispa-
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otated factor matrix for the factor analysis of environmental learning

easures

easure Factor 1 Factor 2

earning from direct experience

irection estimation .03 .91

istance estimation .03 .73

ap sketching .04 .70

earning from video

irection estimation .96 .14

istance estimation .58 .05

ap sketching .48 .13

earning from VE

irection estimation .57 .07

istance estimation .19 .16

ap sketching .49 .13

Table 2

Univariate correlations between variables in the study

1 2 3 4a 4b 5 6 7 8 9 10 11 12 13 14 15 16

1. Embedded figure

2. Mental rotation .31

3 Arrow Span .36 .31

4a. Perspective accuracy .20 .20 .13

4b. Perspective RT .34 .24 .30 .24

5. Sense-of-direction .15 .09 .23 .12 .07

6. Vocabulary .28 .05 .06 .21 .13 .07

7. Reading span .22 � .01 .10 .18 .23 .06 .39

8. Abstract reasoning .54 .23 .35 .22 .48 .21 .35 .35

9. Direct experience distance .27 .14 .32 .18 .13 .37 .12 .17 .27

10. Direct experience direction .28 .21 .39 .18 .24 .46 .15 .17 .34 .67

11. Direct experience map .19 .11 .36 .18 .22 .36 .11 .14 .31 .52 .67

12. Video distance .29 .16 .14 .19 .20 .26 .21 .14 .39 .24 .28 .28

13. Video direction .46 .33 .25 .25 .29 .34 .22 .18 .51 .31 .43 .35 .50

14. Video map .30 .22 .26 .13 .28 .23 .23 .15 .42 .30 .38 .40 .30 .49

15. VE distance .19 .08 .14 .09 .10 .10 .07 .20 .19 .20 .27 .15 .20 .20 .12

16. VE direction .45 .40 .34 .22 .27 .24 .12 .11 .50 .29 .41 .25 .27 .53 .25 .37

17. VE map .42 .25 .39 .14 .28 .22 .11 .14 .43 .25 .41 .33 .26 .46 .36 .23 .48

Note. All variables have been transformed so that higher scores indicate more ability.
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rate set of abilities, and to examine the extent to which

processing of spatial information at different scales of

space reflects the same or different underlying abilities.

To achieve these goals, we first conducted an explor-

atory analysis of the environmental spatial tasks, and

then used structural equation modeling to examine the

extent to which latent variables (or factors) underlying

the predictor variables accounted for the variance in

latent variables underlying the environmental spatial

measures.

3.3.1. Exploratory factor analyses of large-scale spatial

abilities

Our data included nine measures of environmental

learning, that is, three measures of environmental learn-

ing (direction estimation, distance estimation, map

sketching) for each of three different learning media

(direct experience, video, VE). These were subjected to

an exploratory factor analysis, using the Maximum

Likelihood extraction method with direct oblimin rota-

tion. Although our task analysis predicted that learning

from direct experience and from visual media would be

partially dissociated, an exploratory factor analysis was

used because we also allowed for the possibility that the

nine measures of environmental learning might reduce

to factors based on how spatial knowledge is measured

(i.e., by distance estimation, direction estimation and

map sketching), rather than how it is learned; they

might also be based on the complexity of the environ-

ments (e.g., the need to integrate over two floors of a

building in the real and video environments but not in

the VE).
Two factors had eigenvalues greater than 1.0. The

scree plot also suggested a two-factor solution. The

rotated pattern matrix is shown in Table 3. Loadings

higher than .4 are used to interpret the factors. Factor 1

can be interpreted as measuring ability to learn spatial

layout from visual media. Measures of learning from

both a video and a virtual environment loaded on this

factor. The only measure of learning from visual media

that did not have a loading of greater than .4 was the

measure of distance estimation after learning a virtual

environment. In contrast none of the measures of learn-

ing from direct experience had loadings of greater than

.4 on this factor. Factor 2 can be interpreted as a

measure of learning from direct experience. All of the

measures of learning from direct experience loaded
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highly on this factor, whereas the measures of learning

from visual media had loadings of less than .3 on this

factor. The correlation between the two factors was .61.

In summary, as predicted by our task analysis the

nine variables could be reduced to two factors indicat-

ing ability to learn spatial layout from visual media and

from direct experience, respectively. In contrast, there

was no evidence that direction estimation, distance

estimation and map drawing defined different factors,

or that the complexity of the environment learned in

different media affected the factor structure.

3.3.2. Relating environmental spatial abilities to

small-scale spatial and other abilities

We now turn to the question of the relation of

environmental learning to small-scale spatial abilities

and other predictors. To answer this question, we tested

structural-equation models that included latent variables

measuring spatial ability in small-scale space, verbal

ability, and self-reported sense-of-direction.4

The structural equation modeling was carried out

using the AMOS program (Arbuckle, 1999), which

uses maximum-likelihood estimation to derive the spec-

ified parameters based on the covariance matrix. We

use several indices to evaluate the fit of the models, as

recommended by Hu and Bentler (1998). The most

common fit index is the v2 statistic, with a significant

v2 indicating a poor fit to the data. However, the v2

statistic is correlated with sample size and is conse-

quently significant with large samples even when dif-

ferences between the model and data are small (Kline,

1998). For this reason, many researchers have advocat-

ed the v2 /df statistic, with a value less than 2.0 indi-

cating a good fit. Another index of fit is the

Standardized Root Mean Square Error of Approxima-

tion (RMSEA); a value of .08 or below indicates a fair

fit, and a value no higher than .05 indicates a good fit

(Hu and Bentler, 1998). The Comparative Fit Index

(CFI) measures the extent to which the examined

model fits better than a baseline model, with a CFI of
4 As recommended by Kline (1998), a latent variable measuring

Self-Report Sense-of-Direction was formed by fixing the error vari-

ance of the SBSOD using the formula

X ¼ 1� rxxð Þ Sx2
� �

where rxx is the reliability of the SBSOD scale (.88) and Sx2 is the

variance in this measure (1.0). This method was used because there

was only one manifest variable measuring sense-of-direction. The

alternative method of using individual items from the SBSOD in

the structural equation models was not possible because it would

lead to a much more complex model, which could not be evaluated

reliably with the sample size in this study.
at least .9 indicating a fair fit and a value of at least .95

indicating a good fit to the data. Another important

principle underlying the structural equation models is

that of parsimony. Although models of arbitrary com-

plexity can be evaluated using structural equation mod-

els, the reliability of a model is inversely proportional

to its complexity, or the number of estimated para-

meters in the model.5 Therefore in all of the analyses,

we sought to find the most parsimonious model that

accounted for the data. The RMSEA index also takes

the parsimony of a model into account, (i.e., it penalizes

complex models).

The full structural-equation model relating the pre-

dictor variables to the measures of environmental learn-

ing is shown in Fig. 6. The fit parameters for this

model, shown in Table 4, indicate that it is a fair to

good fit to the data. However, the path coefficients from

verbal ability to the two measures of environmental

learning were not significant. Path coefficients can be

interpreted as standardized regression weights indicat-

ing the degree of relation between the predictor and

predicted variables after controlling for the effects of

the other variables. The non-significant path coeffi-

cients indicate that verbal ability is not a significant

predictor of environmental-learning ability after con-

trolling for the effects of small-scale spatial ability

and sense-of-direction. Inclusion of this construct also

reduces the parsimony of the model (number of esti-

mated parameters=38). We therefore tested a reduced

model, shown in Fig. 7, which omits the verbal factor.

All of the path coefficients in this model were statisti-

cally significant and did not vary significantly from the

corresponding path coefficients in the full model. Fit

indices for the reduced model, shown in Table 4, indi-

cate that it also fits the data reasonably well and is more

parsimonious (number of estimated parameters=30);

therefore this model is preferred.

Although verbal ability does not make an indepen-

dent contribution to explaining large-scale spatial

learning, it is possible that general intelligence does,

and it is important to test whether the significant paths

from spatial ability to the measures of large-scale

learning reflect variance specific to spatial as opposed

to general intelligence. We tested another model in

which we added abstract reasoning ability as a mea-

sured variable to the model depicted in Fig. 7. Fit

parameters for this model indicated that it is a good
5 Although there are no absolute standards in the structural equation

modeling literature regarding sample size, a sample size of 10–20

participants per parameter is desirable, and a sample size of less than 5

subjects per parameter produces an unreliable model (Kline, 1998)
.
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fit to the data (see Table 4). However coefficients of

the paths from abstract reasoning to learning from

direct experience (.16) and learning from visual

media (.03) were not statistically significant. Further-

more, addition of abstract reasoning to the model did

not change the significance of any of the other paths; it

increased the path from spatial ability to direct expe-

rience learning from .50 to .61, and did not change any

of the other path parameters by more than .04. Since

abstract reasoning does not add to the prediction of

spatial layout learning and this model is less parsimo-
Table 4

Fit indices for structural-equation models of abilities and performance

Model v2 (df) v2 /df RMSEA CFI

Full model (Fig. 6) 142.48 (82) 1.74 .06 .94

Reduced model

without verbal

ability (Fig. 7)

117.64 (61) 1.93 .07 .94

Reduced model with

abstract reasoning

added as a predictor

111.86 (68) 1.65 .05 .96

Model with path coefficients

from spatial ability to

environmental learning

abilities constrained to

be equal

133.66 (62) 2.15 .07 .92

Model with path coefficients

from SOD to environmental

learning abilities constrained

to be equal

122.88 (62) 1.66 .07 .93

Reduced model with sex

added as a predictor

139.80 (70) 1.99 .06 .92
nious (number of estimated parameters=37), the re-

duced model in Fig. 7 is preferred.6

The reduced structural-equation model in Fig. 7

indicates that small-scale spatial ability is a predictor

of both environmental spatial factors. It is a strong

predictor of learning from visual media (path coeffi-

cient= .87 with a 95% confidence interval of .74 to

.99)7 and a moderate predictor of learning from direct

experience (path coefficient=50 with a 95% confidence

interval of .36 to .63). These data support the Partial

Dissociation model depicted in Fig. 1. They are incon-

sistent with the Unitary model in that the 95% confi-

dence intervals do not include 1. They are inconsistent

with the Total Dissociation model in that the 95%

confidence intervals do not include 0. They also indi-

cate that, as predicted, small-scale spatial ability is more

predictive of learning from visual media than from

direct experience in an environment. As a more formal

test of this prediction, we used a procedure in which the

model shown in Fig. 7 was compared to a nested

restricted model in which these path coefficients are

constrained to be equal. The two models can be com-
6 As another method of controlling for the effects of general ability,

we performed a factor analysis of all of the variables in this study. We

extracted a general ability factor, on which abstract reasoning, verbal

ability and verbal working memory but none of the other variables

had loadings greater than .4. All other variables were regressed on this

factor, and the residuals were used to repeat the analyses reported in

Figs. 7 and 8. None of the results of the analyses (e.g., significance of

e paths) changed appreciably from those reported.
7 To calculate the confidence intervals, the standard error of the path

oefficients were estimated using the bootstrapping method (Klein,
th

c

1998).
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pared by subtracting the v2 for the unconstrained model

from the v2 for the constrained model (degrees of

freedom for this comparison are calculated with an

analogous subtraction). The restricted model (constrain-

ing the paths from spatial ability to the two environ-

mental learning factors to be equal) provided a

significantly poorer fit to the data than the unrestricted

model shown in Fig. 7 (see the fit parameters for these

models in Table 4, v2 [1, N =221]=16.02, p b .001).

This result indicates that as we hypothesized, small-

scale spatial ability is a significantly stronger predictor

of learning from visual information alone than of learn-

ing from direct experience.

The significant path coefficients from self-report

sense-of-direction to the latent variables measuring

learning from direct experience (path coefficient= .39

with a 95% confidence interval of .24 to .54) and

learning from visual media (path coefficient= .18 with

a 95% confidence interval of .01 to .34) indicate that

sense-of-direction makes independent contributions to

predicting environmental learning after controlling for

the effects of small-scale spatial ability. To examine
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strengths of these paths, we compared a restricted

model in which these paths were constrained to be

equal to the full model. The restricted model (see

Table 4) provided a significantly poorer fit to the data

than the unrestricted model (v2 (1, N =221)=5.25,

p b .05). Thus, we can conclude that self-report sense-

of-direction is a significantly stronger predictor of

learning from direct experience than of learning from

visual information alone.

Is there any evidence for the Mediation model

suggested by Allen et al. (1996), in which perspec-

tive taking mediates the relationship between small-

scale ability and measures of large-scale learning? To

test this model, we performed analyses in which we

assumed both a direct path from the small-scale

spatial abilities factor to the environmental learning

factors, and an indirect path assuming that perspec-

tive taking mediates the relation between small-scale

and large-scale spatial ability. These analyses are

summarized in Fig. 8. The spatial-abilities and envi-

ronmental learning factors in these analyses are de-
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fined by the same variables as in previous analyses,

but for simplicity of presentation, we have omitted

the loadings of the different measures on these fac-

tors. Note that path coefficients from spatial ability to

the environmental learning factors are higher, because

shared variance with other measures (e.g., sense-of-

direction) is not controlled in this analysis. The most

important result of these analyses is that the direct

path between spatial ability and environmental learn-

ing is significant in both cases, even when we allow

for the possibility of a mediated path through per-

spective taking. Furthermore, the direct path from

perspective taking is not significant and has a nega-

tive coefficient in both cases, indicating that if any-

thing, perspective taking acts as a suppressor variable.

It is clear therefore that although small-scale spatial

ability and perspective taking ability are highly related,

there is no evidence for the Mediation model in this

study.
Table 5

Sex differences for variables in the study

Variable Males (N =83) Female

Mean SD Mean

Visual–spatial abilities

Embedded Figures Test 13.0 4.9 12.0

Vandenberg MRT 22.6 7.5 17.8

Arrow Span Test 50.2 6.3 47.6

Perspective taking

Accuracy 11.0 1.6 10.7

Reaction time (s) 5.9 3.0 5.5

Self-report sense of direction

SBSOD 3.9 0.9 3.4

Verbal/general abilities

Vocabulary 9.4 5.2 10.1

Reading Span Test 2.2 0.7 2.5

Abstract Reasoning Test 41.2 5.8 40.6

Learning from direct experience

Direction estimation 33.4 19.2 42.4

Distance estimation .45 .29 .33

Map sketching 1.2 1.9 1.7

Learning from video

Direction estimation 47.9 24.6 62.0

Distance estimation .36 .29 .31

Map sketching 1.4 1.9 1.8

Learning from VE

Direction estimation 37.6 19.8 50.8

Distance estimation .39 .30 .29

Map sketching 0.7 1.0 1.1

Note. Significance tests are based on independent samples t-tests (two-tailed

not report their sex are not included in these analyses.

*p b .05. **p b .01. ***p b .001.
3.4. Sex differences

Table 5 presents data on sex differences, including a

measure of effect size, Cohen’s d (Cohen, 1988), which

is equal to the difference in means between males and

females divided by the pooled standard deviation.

Males outperformed females in some but not all of

the spatial measures. Consistent with previous research

(Linn & Petersen, 1985; Voyer, Voyer, & Bryden, 1995)

the largest sex difference in small-scale spatial ability

was in mental rotation. There was also a significant sex

difference in favor of males on the Arrow Span Test,

but not on the Embedded Figures test or the Perspective

Taking measures. Males significantly outperformed

females in some of the measures of environmental

learning from both direct experience and visual

media. These differences were most pronounced when

environmental learning was assessed with measures of

direction estimation. Males also reported a better sense-
s (N =135) t df Cohen’s d

SD

4.6 1.43 166 .21

5.8 5.00*** 142 .70

6.7 2.86** 181 .39

1.9 1.46 193 .17

0.9 0.90 140 .15

1.0 3.33** 197 .50

4.3 1.03 148 .15

0.7 2.44* 182 .42

5.9 0.70 175 .09

21.1 3.20** 187 .43

.31 2.60* 171 .39

2.1 1.56 188 .33

26.7 3.99*** 185 .52

.27 1.26 155 .18

1.8 1.37 166 .21

21.1 4.64*** 181 .61

.29 2.20* 171 .33

1.3 2.60* 204 .33

) with equal variance not assumed. Data from 3 participants who did
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of-direction. Finally, there was a significant sex differ-

ence in favor of females on the Reading Span test.

To examine whether sex predicts spatial-layout

learning independently of small-scale spatial ability

and self-reported sense-of-direction, we conducted an

analysis in which we included sex (measured variable)

as an additional predictor variable to the model pre-

sented in Fig. 7. Although the correlations of sex with

small-scale spatial ability (.34) and sense-of-direction

(.23) were statistically significant, the path coefficients

from sex to learning from direct experience (.04) and

visual learning (.02) were very small and non-signifi-

cant, indicating that sex does not make an independent

contribution to predicting spatial-layout learning, above

and beyond the contributions of small-scale ability and

sense-of-direction. Furthermore, adding sex as a vari-

able did not change the significance of any of the paths

in the model presented in Fig. 7, and did not change any

of the path coefficients in that model by more than .06.

4. Discussion

This study had two major goals. The first was to

characterize the sources of individual differences in

environmental spatial abilities, examining whether

they reflect a single underlying ability or a disparate

set of abilities. We found that measures of environmen-

tal learning defined separable factors that were charac-

terized by whether the environment was experienced

directly, or from visual media (a video and a desktop

VE). The second goal was to assess the degree to which

large-scale spatial abilities can be accounted for by

measures of small-scale spatial ability, spatial updating

ability (including self-reported sense-of-direction) and

verbal ability. Our results indicate that small-scale spa-

tial ability has considerable shared variance with large-

scale spatial learning, although it is a much stronger
Large Scale Spatial Layout Learning

Encoding spatial inf
Maintenance of spatial re

Inference from s

Updating and spatial 
learning based on 
sensing of body 

motion

Fig. 9. Model of the relation between small-scale and large-sca
predictor of learning assessed using visual media

than of learning assessed in a real environment. Self-

report sense-of-direction independently predicts learn-

ing assessed in a real environment and, to a lesser

degree, from visual media. In contrast, verbal ability

and general ability are not independent predictors of

large-scale spatial abilities.

We considered four different models of the relation

between small-scale spatial abilities and learning of

spatial layout at the environmental scale (Fig. 1): the

Unitary model, the Total Dissociation model, the Par-

tial Dissociation model and the Mediation model. Our

results support the Partial Dissociation model and are

inconsistent with the other three models. Moreover,

they specify the degree of overlap between small-

scale and large-scale abilities, and provide new

insights about what these abilities have in common

and how they differ. First, it is clear that the variance

they share is specific to spatial information processing,

and does not reflect verbal or general intelligence.

Second, our results suggest that the shared variance

is specific to spatial representations constructed from

visual inputs. Thus, measures of small-scale spatial

ability are very highly predictive of environmental

learning from visual media, but less predictive of

learning from direct experience, which occurs in envi-

ronmental spaces and involves other sensory inputs

such as kinesthesis. Ability to process spatial informa-

tion based on these other sensory inputs, in turn,

accounts for the dissociation that we observed between

small-scale spatial abilities measures and measures of

learning from direct experience. The elaborated Partial

Dissociation model suggested by our research is

depicted in Fig. 9. Note that this model does not

specify which, if any, processes are specific to small-

scale spatial tasks, and this question is beyond the

scope of the present study.
Small Scale Spatial Abilities

ormation from visual input
presentations in working memory
patial representations 
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le spatial abilities proposed on the basis of this research.
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The model proposed in Fig. 9 is consistent with the

theories of behavioral scientists (Acredolo, 1981; Cut-

ting & Vishton, 1995; Freundschuh & Egenhofer, 1997;

Gärling & Golledge, 1987; Kuipers, 1982; Mandler,

1983; Montello, 1993; Montello & Golledge, 1999;

Tversky et al., 1999) and neuroscientists (e.g., Aguirre

& D’Esposito, 1999; Previc, 1998) who have empha-

sized the dissociation between the mental systems for

processing spatial information at different scales of

space, and provides new information regarding the

nature of this dissociation. On the other hand, it sug-

gests that theorists need to pay more attention to the

ways in which these systems work together to accom-

plish complex spatial cognitive tasks, and the extent to

which spatial tasks at different scales of space rely on

common processes for encoding, maintaining and trans-

forming spatial representations. This study has shown

that the study of individual differences, especially when

analyzed using structural equation models, is a prom-

ising method for investigating these questions.

4.1. Learning from direct experience and visual media

An important new finding of this study is that mea-

sures of spatial learning from a real environment and

measures of learning from visual media are partially

dissociated in that they load on different factors. We can

interpret this dissociation in terms of the task analysis

presented in Fig. 2. First, real navigation by walking

and simulated navigation by watching a video or a

desktop VE differ in that the former includes sensory

inputs from body-based senses, whereas the others

involve visual input alone. In regard to learning, recent

research has suggested that vestibular information does

not contribute to learning of spatial layout in spaces at

the scale studied in our video environment (Waller et

al., 2003), although other body-based senses involved

in active motion (i.e., kinesthesis and efference copy of

the muscle commands) do affect learning of spatial

layout at this scale (Waller et al., 2004). Vestibular

information does contribute to spatial updating at smal-

ler scales, similar to that of our VE simulation (Chance

et al., 1998; Klatzky et al., 1998).

The quality of visual information sensed by partici-

pants also differed for the real environment and visual

media. The building space that our participants walked

through surrounded them and was larger than their

bodies, both distally and proximally on the retina. In

contrast, both the video and computer monitors that

were used to display the video and virtual environments

show flat pictures of less than a meter square distally,

and one half or less of the visual field proximally. This
field of view in the visual media eliminates most pe-

ripheral vision, which means that a given visual feature

disappears from the field of view more quickly in a

visual medium than in the real world, placing more

demand on working memory to maintain an internal

representation of the feature location (Sholl, 1996).

Thus, the dissociation between learning from direct

experience and learning from visual might also reflect

differential demands on internal maintenance of infor-

mation involved in processing different displays.

The dissociation of ability to learn from direct ex-

perience and ability to learn from visual-media might

also reflect individual differences in ability to update

one’s position in an environment while performing

outcome measures such as direction and distance esti-

mation, which rely on an accurate representation of

one’s location. Participants in our study were tested

bin situ,Q such that they walked through the real envi-

ronment when their knowledge of that environment was

being tested, but they sensed their motion by vision

alone during the testing phase for the video and virtual

environments. Walking in a real environment enables

one to automatically update one’s location, whereas this

updating is more effortful when movement is sensed by

vision alone (Klatzky et al., 1998; Loomis et al., 1999).

Testing in a visual medium therefore relies more on

effortful updating.

An issue that arises in interpreting the dissociation

between learning from real environments and from

visual media is that the environments learned from

these experiences were different; that is, had different

shapes and varied in complexity. Although it is impor-

tant to replicate our results in other environments, a few

considerations suggest that differences between the

environments are unlikely to be a major cause of the

dissociation observed in this study. First, while the

environments had different shapes, all three were com-

posed of mostly straight segments and right-angled

turns. Second, measures of learning the video and

virtual environment loaded on the same factor, although

the environments learned had different shapes. Third, in

terms of complexity, the environments learned from

direct experience and from video were similar in that

they both involved integrating two floors of a building

and learning a relatively large number of landmarks (8

and 7, respectively), in contrast with the virtual envi-

ronment that had just one floor with 4 landmarks.

However, measures of learning these complex environ-

ments loaded on different factors in the exploratory

factor analysis.

The partial dissociation between learning from real

environments and from visual media has important
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methodological implications for spatial cognition re-

search, because visual media such as video and virtual

environments are increasingly being used to assess

environmental skills (e.g., Goldin & Thorndyke, 1982;

Juan-Espinosa et al., 2000; Moffat, Hampson, & Hatzi-

pantelis, 1998; Pearson & Ialongo, 1986; Waller, 2000).

Virtual environment technology is increasingly used in

behavioral studies because of the experimental control

that it affords (Blascovich, Loomis, & Beall, 2002),

and it is necessary to use visual media in brain imaging

studies of spatial-layout learning because participants

cannot physically move while being scanned. Our

study suggests that researchers should be cautious in

drawing conclusions about real-world spatial learning

from measures of environmental learning in simula-

tions that provide visual information alone. Specifical-

ly, measures based on visual simulations may lead one

to overestimate the relation between small- and large-

scale spatial abilities. On the other hand, learning from

navigation in a real world and from visual media also

share considerable variance (r= .61 in this study; see

also Richardson et al., 1999). Therefore, depending on

the research goal, in some situations a measure of

learning from a video or virtual environment may

provide an adequate approximation of real-world learn-

ing ability.

In contrast to different learning media, different

outcome measures did not define separate factors in

our analyses, indicating that they measure a common

ability. In terms of the task analysis presented in Fig. 2

this suggests that there are not large individual differ-

ences in the breadout processesQ involved in using the

internal representation of the environment to perform a

given outcome measure, or that abilities associated

with these readout processes are highly correlated.

The fact that these different measures were not sepa-

rable in the factor analysis is somewhat surprising,

because there has been much discussion of the differ-

ential task demands potentially imposed by various

measures of environmental knowledge (e.g., Kitchen,

1996; Newcombe, 1985). In particular, map drawing,

which depends less on ability to internally integrate

spatial information (and depends to some extent on

drawing ability) was not separable from distance and

straight-line direction measures, suggesting that all

three measures reflect ability to acquire and infer

knowledge of the configuration of an environment

from information sensed over time as one navigates

the environment. Although we have stressed the im-

portance of taking task demands into account in mak-

ing inferences from measures of environmental

knowledge (Montello et al., 2004), the present study
suggests that their contribution to individual differ-

ences in performance is not decisive, at least for the

set of measures used here.

4.2. Relations between large and small-scale spatial

abilities

In providing evidence for a partial rather than total

dissociation between large- and small-scale spatial abil-

ities, our study argues for a stronger relation between

these abilities than previous individual differences stud-

ies. There are several possible reasons for this stronger

association. First, in contrast to previous studies, which

selected small-scale spatial abilities on the basis of their

prevalence in the psychometric literature, we selected

our measures of small-scale spatial ability on the basis

of a cognitive task analysis. As a result, we sampled a

broader set of measures of small-scale spatial ability,

including a measure of spatial working memory, which

reflects ability to maintain spatial representations in

memory that probably underlies both small- and

large-scale spatial tasks. Second we used structural

equation modeling, which enabled us to factor out

extraneous sources of variance in our analyses. Consis-

tent with previous studies of environmental spatial

abilities (Allen et al., 1996; Bryant, 1982; Goldin &

Thorndyke, 1982; Lorenz, 1988; Lorenz & Neisser,

1986; Pearson & Ialongo, 1986), we observed relatively

low zero-order correlations between small-scale and

environmental spatial abilities. However, when we par-

tialed out the variance associated with specific tests and

controlled for other variables such as verbal intelligence

in structural equation models, we observed a much

stronger relationship (a similar relationship was

reported by Kirasic, 2000, who also used structural

equation modeling). Thus, task-specific variance and

error variance may have masked a stronger relationship

in previous studies. A third possible reason for the

stronger relationship observed in this study is that our

measures of large-scale spatial ability were based on

learning of new environments, rather than existing

knowledge of familiar environments (as studied by

Bryant, 1982; Goldin & Thorndyke, 1982), which can

be confounded by factors such as amount of exposure

to the environment.

Finally, and perhaps most importantly, our outcome

measures primarily assessed the ability to infer config-

ural properties of environments in contrast with the

large-scale spatial ability factors identified in previous

studies (Allen et al., 1996; Lorenz, 1988; Pearson &

Ialongo, 1986), which were defined by tasks that can be

accomplished from a route representation and do not
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necessarily involve metric configural knowledge. This

is most clearly seen in a comparison of our study with

that of Allen et al. (1996). They identified a large-scale

spatial factor called topological knowledge, which was

totally dissociated from their small-scale spatial factor.

The topological knowledge factor is very different from

the environmental learning factor that we measured, in

that it was based on measures of scene recognition,

scene sequencing, map placement, intra-route distance

error and route reversal error. This factor can be char-

acterized as a measure of route memory. The measures

making up this factor require little or no configurational

knowledge or inference from the memory of the route

encountered. Taking our study together with that of

Allen et al., it is likely that the ability to remember

the sequence of landmarks along a route does not share

common processes with small-scale spatial cognition,

but the ability to infer the configuration of an environ-

ment from route experience does. Thus, the two studies

complement each other.

Although Allen et al. (1996) did not identify a

configural knowledge factor (in their study, ability to

point to unseen landmarks in a newly learned environ-

ment and ability to estimate straight-line distances be-

tween landmarks did not load on a common factor),

they found in one experiment that perspective taking

ability mediated the relationship between small-scale

spatial ability and pointing to unseen landmarks. How-

ever, this result did not replicate in a second experi-

ment. In our study, we observed a strong correlation

between perspective taking ability and small-scale spa-

tial ability factors (see also Kozhevnikov & Hegarty,

2001; Hegarty & Waller, 2004), and there was no

evidence that perspective taking made a unique contri-

bution to predicting spatial-layout learning when its

common variance with small-scale spatial ability was

partialed out. The discrepancy between our study and

theirs might be explained by the fact that both perspec-

tive taking and large-scale spatial abilities were mea-

sured differently in the two studies. In particular, the

perspective taking test used in our study was simpler in

that it involved remembering the locations of 4 objects

and imagining perspectives that were orthogonal to the

studied view. In contrast, the task of Allen et al. in-

volved taking perspectives that were both orthogonal

and oblique to the viewed perspective of a model town.

Although the perspective taking abilities measured in

these two studies might not be comparable, the idea that

tasks at the vista scale of space (such as perspective

taking) might mediate the relation between large and

small-scale spatial cognition is intriguing and worthy of

future study.
4.3. Sex differences

Although there has been much speculation about the

nature of sex differences in large-scale spatial cognition

and its relation to sex differences in small-scale spatial

abilities, few studies have actually measured sex differ-

ences in larger-scale tasks, especially in real (as opposed

to virtual) environments. Our study informs theories of

the nature and causes of sex differences in spatial cog-

nition. First, the sizes of the sex differences in small-

scale spatial abilities (mental rotation and embedded

figures) replicate previous studies (reviewed by Linn &

Petersen, 1985; Voyer et al., 1995), so that our sample is

comparable to others in the literature. Second it indicates

that there are sex differences in measures of large-scale

spatial learning, although these differences are not evi-

dent in all measures and are smaller than the sex differ-

ence in mental rotation (the largest sex difference

documented in the literature). Specifically, sex differ-

ences are especially evident in direction-estimation

tasks, which rely most on the ability to infer configural

and metric knowledge from spatial information learned

sequentially, on a route. In contrast, they are less pro-

nounced in map-drawing tasks, which can be accom-

plished with route knowledge. Although certainly not

conclusive, our results are consistent with the view that

there may be a stylistic difference in how males and

females represent space, with males depending more

on configural representations and females depending

more on route representations (Lawton, 1994; Lawton

et al., 1996; Montello, Lovelace, et al., 1999).

Our study also informs debate about the evolution of

sex differences. This debate has revolved around ques-

tions of whether sex differences in tasks such as mental

rotation can be attributable to selection pressures for

males to have superior navigation ability, suggesting

that mental rotation and navigation reflect the same

abilities (Gaulin 1995; Jones et al., 2003; Kimura,

2000), or whether different selection pressures (e.g.,

in hunting vs. gathering) produce dissociable sets of

spatial abilities that were subject to independent selec-

tion pressures (Silverman & Eals, 1992). Our study

adds plausibility to the view that sex differences in

small-scale spatial abilities may partially result from

evolved sex differences in navigation, because naviga-

tion abilities shared some common variance with small-

scale tasks, and sex was not a significant predictor of

environmental learning when its common variance with

small-scale tasks and sense-of-direction was partialed

out (see also Waller, 2000). (A post hoc analysis indi-

cated that this was true, even when environmental

learning was not controlled for variance shared with
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sense-of-direction). On the other hand, it would be

wrong to conclude from these data that sex differences

in mental rotation specifically can be attributed primar-

ily to differential selection pressures for navigation

ability between the sexes, because the simple correla-

tions between mental rotation and learning from direct

experience are low (ranging from .11 to .21 for different

outcome measures, see Table 2). Given evidence that

spatial ability can be modified by experience and train-

ing (e.g., Baenninger & Newcombe, 1989), it is likely

that evolutionary pressures alone do not fully explain

sex differences in spatial ability.

4.4. Limitations

The present study has some limitations. Most notably,

our measure of spatial updating ability, i.e. SBSOD, was

an indirect measure based on self reports. In fact, we

attempted to measure blindfolded updating in this study,

but our measure was based on only two trials which were

not sufficient to yield a reliable measure. Use of self-

reported sense of direction as a measure of updating

ability is justified because Kozlowski and Bryant

(1977) found a large difference between good- and

poor-sense-of-direction individuals in ability to update

their position with respect to the start of a route through

an underground maze, in which visual information was

very impoverished. Furthermore, in a previous study

(Hegarty et al., 2002), the SBSOD was correlated .40

with a more extensive measure of blindfold updating,

and was correlated .44 with a task that included the

ability to update one’s position with respect to landmarks

on a college campus as one walked from an outside

location to an experimental room to be tested. The

contribution of non-visual updating to environmental

learning ability is an important issue that needs to be

addressed more directly in future studies.

Another limitation of our study is that although we

documented individual differences in large-scale spatial

learning and can speculate about the nature of these

differences based on their correlations with other abil-

ities, we did not directly measure the specific strategies,

representations or processes used by individuals with

different spatial abilities. Much more research is needed

to develop precise and comprehensive cognitive models

of the performance of high- and low-ability individuals

in environmental spatial cognition. Finally, like most

other studies of large-scale spatial abilities, our study

focused on learning of spatial layout, which is just one

task that people accomplish in large-scale space. The

approach used here also needs to be applied to study

individual differences in other large-scale tasks, such as
wayfinding in familiar environments, planning trips,

and giving and understanding verbal directions. Finally,

there was probably a restricted range in some of our

measures, because most of our participants were college

students, so it is important to replicate these findings

with samples that are more representative of the general

population.

4.5. Conclusion

In conclusion, perhaps one of the most striking

findings of this study is that there are very large

individual differences in environmental spatial abili-

ties. Inspection of the range of values in Table 1

indicates that after a brief exposure to a new environ-

ment, the most able participants could point to unseen

landmarks in the environment with less than 108 of

absolute error, showed an almost perfect correlation

between their estimates of distances among landmarks

and the true distances, and made no qualitative errors

in drawing sketch maps of the environments. In con-

trast, the least able participants had pointing perfor-

mance that was not significantly different from chance,

showed no correlation or even a negative correlation

between estimated and true distances, and made nu-

merous errors in drawing sketch maps. Individual dif-

ferences in large-scale spatial cognition deserve more

study, not just because they are so large and pervasive,

but also because they can inform theories of the nature

of spatial cognition.
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